Questões de Vestibular
Sobre dinâmica em física
Foram encontradas 1.283 questões
Use os valores aproximados: g = 10 m/s2 e π = 3.
Uma das etapas mais difíceis de um voo espacial tripulado é a
reentrada na atmosfera terrestre. Ao reencontrar as camadas
mais altas da atmosfera, a nave sofre forte desaceleração e sua
temperatura externa atinge milhares de graus Celsius. Caso a
reentrada não ocorra dentro das condições apropriadas, há risco de graves danos à nave, inclusive de explosão, e até mesmo
risco de ela ser lançada de volta ao espaço.
Adaptado de http://www1.fisica.org.br/fne/phocadownload/ Vol16-Num2/a05.pdf
Ao realizar uma determinada atividade utilizando apenas a mola amarela, duas alunas, Carolina e Fernanda, fizeram a seguinte solicitação para a instrutora:
Carolina: Está muito pesado! Por favor, diminua a carga. Fernanda: Está muito leve! Quero realizar o exercício com a maior carga possível.
Qual das ações propostas a seguir atende os objetivos das alunas?
Analise a seguinte situação problema:
Suponha que um motorista, dirigindo um carro, com massa de 800 kg e com uma velocidade de 108 km/h, resolve atender ao celular. Distraindo-se, colide com outro carro, com massa de 1 tonelada, que estava parado. A colisão entre os carros foi perfeitamente inelástica e a força que deforma os carros atuou durante o intervalo de tempo de 0,1s. Determine a velocidade dos carros, em km/h, imediatamente após a colisão
Nas olimpíadas de inverno, dentre várias modalidades esportivas, há o salto com esqui, que consiste em esquiar por uma rampa íngreme e saltar o mais longe possível. A eslovena Ursa Bogataj foi a medalhista de ouro nas Olimpíadas de Pequim 2022, saltando 108 m. A distância alcançada pela desportista, nesse salto, é equivalente ao gramado do famoso estádio do Maracanã, no Rio de Janeiro, de uma ponta a outra.
Imagine que a eslovena recebe um novo desafio: saltar numa pista de esqui que liga dois picos, com as seguintes medidas da pista: comprimento de 800 m; inclinação θ = 30°; H = 100 m; h = 82 m. A desportista eslovena parte do repouso do pico mais alto, sem usar os bastões, em direção ao pico mais baixo, conforme mostra a imagem.
Qual o valor do coeficiente de atrito dinâmico entre a neve e os esquis, para que a esquiadora pare, exatamente,
no pico mais baixo? Considere cos 30° = 0,9

A partir dessas informações e considerando sen(75°) = 0,97 e cos(75°) = 0,26, julgue o item seguinte.
No modelo apresentado a seguir, foi inserido um sistema de coordenadas ortogonais xOy, em que a curva no primeiro quadrante corresponde ao trecho seguinte do trilho na montanha russa. Nesse caso, se o carro chega com 15 m/s à altura H, então, para ele continuar no trilho (considerado sem atrito), de modo a não haver solavancos, a curva, no primeiro quadrante, deve satisfazer à equação y = 42 + 3,73x + 0,33x2 .

A partir dessas informações e considerando sen(75°) = 0,97 e cos(75°) = 0,26, julgue o item seguinte.
Se o coeficiente de atrito entre o carro e a rampa é &, então, a energia necessária, em módulo, para o carro vencer a força de atrito, é µMgH . tg(α).

A partir dessas informações e considerando sen(75°) = 0,97 e cos(75°) = 0,26, julgue o item seguinte.
Em um carro, inicialmente em repouso, no início da rampa, passa a atuar uma força de 6.000 N, na direção paralela ao plano inclinado e no sentido para cima da esteira. Nesse caso, se o coeficiente de atrito é µ = 0,4, então, a velocidade, em m/s, com que o carro irá chegar ao topo da rampa, estará no intervalo [25, 27].

A partir dessas informações e considerando sen(75°) = 0,97 e cos(75°) = 0,26, julgue o item seguinte.
Para o carro vencer apenas a força da gravidade, será
necessário realizar um trabalho igual a M × g × H.

Sabe-se que a aceleração da gravidade é igual a 10 m/s2 e que, durante a descida da criança, ocorre uma perda de energia mecânica de 60%.
Ao atingir o ponto mais baixo do escorrega, a velocidade da criança, em m/s, é igual a:

Considerando apenas a força resultante exercida pelos três grupos, o módulo da aceleração, em m/s2 , que atua sobre o recipiente é igual a:

Considere uma pessoa de 1,70 m que eleva uma bola de 6 kg a uma altura de 40 cm acima da sua cabeça. Em seguida, a pessoa realiza sobre a bola um trabalho adicional de 10 calorias para arremessá-la. Se a colisão da bola com o solo for perfeitamente inelástica, a energia total dissipada na colisão será de
Note e adote: Considere 1 cal = 4,2 J e g = 10 m/s2 .

A força resultante necessária para manter um objeto de massa m em uma órbita circular de raio R com velocidade angular ω é F = mω2R. Sendo FT e Fw as intensidades das forças gravitacionais resultantes sobre a Terra e sobre o telescópio, respectivamente, assinale a alternativa que descreve a razão Fw / FT entre essas forças.
Note e adote: Despreze os efeitos gravitacionais da Lua e suponha que

Ao soltar a esfera 1, ela colidirá com a bolinha 2, inicialmente em repouso. Supondo que a colisão seja perfeitamente elástica, verifica-se que, após a colisão, a esfera 2 subirá para a mesma altura h. Imagine agora que uma pequena goma colante seja colocada numa das esferas de modo que, após a colisão, ambas permaneçam unidas. Neste caso, após a colisão, a altura alcançada pelo sistema formado pelas duas bolinhas unidas será:
Note e adote: Desconsiderar a massa da goma.

Sobre esse movimento, é correto afirmar: