Questões de Vestibular de Física - Física Moderna
Foram encontradas 187 questões
Assinale a alternativa que preenche corretamente as lacunas do enunciado abaixo, na ordem em que aparecem.
Quando um núcleo de urânio 238U92 absorve um nêutron, forma-se o núcleo 239U92, que é radioativo com meia-vida de 24 minutos.
Núcleos de urânio 239U92 emitem radiação ........ , transformando-se em núcleos de netúnio 239Np93. Esse isótopo de netúnio também é radioativo com meia-vida de 2,3 dias.
Ao emitirem radiação ........ , os núcleos de netúnio 239Np93 transformam-se em núcleos de plutônio 239Pu94, cuja meia-vida é cerca de 24.000 anos.
As forças que se observam na natureza podem ser explicadas em termos de quatro interações fundamentais.
Na primeira coluna do quadro abaixo, estão listadas as quatro interações fundamentais; na segunda, exemplos de fenômenos que se observam na natureza.
Assinale a alternativa que associa corretamente as interações fundamentais, mencionadas na primeira
coluna, aos respectivos exemplos, listados na segunda.
Analise as proposições com relação à Física Moderna.
I. As ondas gravitacionais propagam-se com a mesma velocidade que as ondas eletromagnéticas e foram previstas pela Teoria da Relatividade.
II. No modelo atômico de Bohr, o núcleo possui apenas nêutrons, enquanto os prótons e os elétrons estão na eletrosfera.
III. No efeito fotoelétrico, um fóton incide sobre a superfície de um material e a partir de uma certa frequência é possível emitir um elétron. A frequência na qual é possível emitir um elétron é fixa e independe do material no qual a luz incide.
IV. A célula solar é um dispositivo que utiliza o efeito fotoelétrico para transformar energia solar em energia elétrica.
V. A dualidade onda partícula refere-se ao fato que uma partícula pode se comportar como uma onda
Assinale a alternativa correta.
Considere as proposições sobre uma onda eletromagnética.
I. É uma oscilação de um campo elétrico perpendicular a uma oscilação do campo magnético que se propaga em uma direção mutuamente perpendicular a ambos os campos.
II. Propaga-se pelo vácuo com uma velocidade constante.
III. A radiação de micro-ondas não é um exemplo de onda eletromagnética.
IV. As ondas sonoras são exemplos de onda eletromagnética.
V. Quando uma radiação eletromagnética é transmitida de um meio para outro, altera-se sua velocidade e seu comprimento de onda.
Assinale a afirmativa correta.
Ao conceber um ser cujas faculdades são tão aguçadas que ele consegue acompanhar cada molécula em seu curso, esse ser, cujos atributos são ainda essencialmente tão finitos quanto os nossos, seria capaz de fazer o que atualmente nos é impossível fazer. Consideramos que as moléculas em um recipiente cheio de ar, a uma temperatura uniforme, movem-se com velocidades que não são de modo algum uniformes. Suponhamos agora que tal recipiente é separado em duas porções, A e B, por meio de uma divisória na qual há um pequeno orifício, e que um ser, que pode ver as moléculas individuais, abre e fecha esse orifício, de forma a permitir que somente as moléculas mais rápidas passem de A para B, e somente as mais lentas passem de B para A. Ele irá, portanto, sem nenhum trabalho, elevar a temperatura de B e baixar a de A, contradizendo a 2ª lei da termodinâmica.
Fonte: https://www.scientiaplena.org.br/sp/article/download/635/296 (Adaptado).
O enunciado refere-se ao experimento mental intitulado
As radiações eletromagnéticas possuem diversas aplicabilidades na vida cotidiana, e o espectro das mais utilizadas pela humanidade é formado por radiações que possuem comprimentos de onda que vão desde dimensões atômicas (raios X e radiação gama) até centenas de metros (ondas de rádio). Conforme a ciência atual postula, a radiação eletromagnética possui caráter dual: pode ser considerada partícula ou onda, dependendo da situação em estudo. Pode-se associar a cada feixe de radiação eletromagnética um feixe de partículas chamadas de fótons, e a energia de cada fóton depende de uma constante, chamada de constante de Planck (h = 6,64 x 10-34 J.s), e é diretamente proporcional à frequência da radiação.
Sobre as radiações eletromagnéticas são feitas as seguintes afirmações:
I. Quanto menor o comprimento de onda da radiação eletromagnética maior a energia do fóton a ela associado.
II. Quanto menor a energia de um dado fóton associado a uma dada radiação eletromagnética menor a sua velocidade de propagação.
III. A energia de um feixe eletromagnético constituído de radiação de frequência constante é discreta, ou seja, só pode assumir valores múltiplos inteiros de um valor mínimo.
Em relação às afirmações acima, marque V para as verdadeiras e F para as falsas e assinale a alternativa correta.
INSTRUÇÃO: Para responder à questão, considere as informações a seguir.
Em Física de Partículas, uma partícula é dita elementar quando não possui estrutura interna. Por muito tempo se pensou que prótons e nêutrons eram partículas elementares, contudo as teorias atuais consideram que essas partículas possuem estrutura interna. Pelo modelo padrão da Física de Partículas, prótons e nêutrons são formados, cada um, por três partículas menores denominadas quarks. Os quarks que constituem tanto os prótons quanto os nêutrons são dos tipos up e down, cada um possuindo um valor fracionário do valor da carga elétrica elementar e (e = 1,6 x 10-19 C). A tabela abaixo apresenta o valor da carga elétrica desses quarks em termos da carga elétrica elementar e.
Assinale a alternativa que melhor representa os quarks que constituem os prótons e os nêutrons.
Utilize as partículas β+ (beta-mais), β- (beta-menos) e α (alfa) para completar as lacunas dos decaimentos radioativos abaixo:
Considerando que υe e υe são, respectivamente,
as representações do anti-neutrino do elétron e do
neutrino do elétron, o correto preenchimento das
lacunas, de cima para baixo, é
DADOS QUE PODEM SER USADOS NESTA PROVA
I. A frequência mínima da radiação incidente para que o efeito fotoelétrico seja observado depende da constituição química do material.
II. A energia de cada fotoelétron ejetado no processo depende da intensidade da radiação incidente.
III. A quantidade de fotoelétrons ejetados no processo depende da intensidade da radiação eletromagnética incidente.
Está/Estão correta(s) a(s) afirmativa(s)
O espectro de emissão do hidrogênio apresenta uma série de linhas na região do ultravioleta, do visível e no infravermelho próximo, como ilustra a figura a seguir.
Niels Bohr, físico dinamarquês, sugeriu que o espectro de emissão do hidrogênio está relacionado às transições do elétron em determinadas camadas. Bohr calculou a energia das camadas da eletrosfera do átomo de hidrogênio, representadas no diagrama de energia a seguir. Além disso, associou as transições eletrônicas entre a camada dois e as camadas de maior energia às quatro linhas observadas na região do visível do espectro do hidrogênio.
Um aluno encontrou um resumo sobre o modelo atômico elaborado por Bohr e o espectro de emissão atômico do hidrogênio contendo algumas afirmações.
I. A emissão de um fóton de luz decorre da transição de um elétron de uma camada de maior energia para uma camada de menor energia.
II. As transições das camadas 2, 3, 4, 5 e 6 para a camada 1 correspondem às transições de maior energia e se encontram na região do infravermelho do espectro.
III. Se a transição 3→ 2 corresponde a uma emissão de cor vermelha, a transição 4→ 2 está associada a uma emissão violeta e a 5→ 2 está associada a uma emissão verde.
Pode-se afirmar que está(ão) correta(s)
Note e adote: Relação de Einstein entre energia (E) e massa (m): E = mc2 Massa do elétron = 9 x 10_31 kg Velocidade da luz c = 3,0 x 108 m/s 1 e V = 1 ,6 x 1 0 -19 J 1 MeV = 106 eV No processo de aniquilação, toda a massa das partículas é transformada em energia dos fótons.
Define-se como meia-vida de um elemento radioativo o tempo necessário para que a metade dos átomos radioativos inicialmente presentes em uma amostra pura desse elemento se desintegre. Assim sendo, decorrido o tempo correspondente a uma meia-vida, o número de átomos radioativos, N, presentes na amostra será a metade do número inicial de átomos radioativos, N0 .
O gráfico a seguir mostra a fração de átomos radioativos, N/N0 , presentes em três amostras radioativas puras, X, Y e Z, em função do tempo.
A alternativa que apresenta as amostras em ordem
crescente de suas meias-vidas é:
Planetas, planetoides e satélites naturais que apresentam campo magnético possuem um núcleo condutor elétrico no qual, originalmente, foram induzidas correntes elétricas pelo campo magnético da estrela-mãe, as quais foram intensificadas pela autoindução, empregando a energia do movimento de rotação desses astros. O campo magnético do nosso planeta é de extrema importância para os seres vivos, pois, aprisionando uma grande parte das partículas com carga elétrica que o atingem, vindas do espaço, reduz drasticamente a radiação de fundo, que é danosa a eles.
Considerando essas informações, são feitas as seguintes afirmativas:
I. As partículas aprisionadas pelo campo magnético terrestre são constituídas por núcleos de hélio, elétrons, prótons e nêutrons livres.
II. As partículas aprisionadas pelo campo magnético terrestre, quando interagem com as partículas da atmosfera, podem dar origem às auroras austrais e boreais.
III. Um planeta que não apresenta campo magnético não tem correntes elétricas induzidas no seu núcleo.
A(s) afirmativa(s) correta(s) é/são:
A figura a seguir mostra três linhas equipotenciais em torno de uma carga positiva que pode ser considerada puntiforme (as dimensões da carga são muito menores que as distâncias consideradas no problema).
O trabalho realizado por uma força externa ao deslocar,
com velocidade constante, a carga de prova de
1,0x10-6C de A até C através do caminho indicado ABC,
em joules, é:
INSTRUÇÃO: Para responder à questão , associe os itens da coluna A às informações da coluna B.
Coluna A
1. Fissão Nuclear
2. Fusão Nuclear
Coluna B
( ) Processo cujos produtos são radioativos de longa duração.
( ) Processo de conversão de energia que ocorre no Sol.
( ) Processo de funcionamento da usina de Fukushima, onde, em 2011, houve um acidente nuclear.
A numeração correta, de cima para baixo, é