Questões de Vestibular

Foram encontradas 69.760 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108400 Física
Dois dos obstáculos para a disseminação do emprego das células a combustível são: a obtenção do H2 de forma sustentável e a dificuldade de armazenamento do H2 (g), visto que pressões muito elevadas do gás são necessárias para a obtenção de densidades energéticas consideradas viáveis para a aplicação veicular. Tradicionalmente, a maioria do H2 empregado no mundo é produzida pela reforma do metano de origem fóssil, processo que resulta em intensa geração de CO2. Por esse motivo, tem-se buscado otimizar a produção do denominado hidrogênio verde, obtido por meio da eletrólise da água, utilizando-se energia elétrica gerada de maneira sustentável (por exemplo, a partir de placas de energia solar). No processo, uma corrente elétrica é aplicada a uma solução aquosa (usualmente uma solução de NaOH), de forma que as semirreações representadas a seguir ocorrem nos eletrodos.

catodo: 2 H3O+ + 2 e- → H2 + 2 H2O
anodo: 2 OH → H2O + ½ O2 + 2 e-
Tendo como referência o texto precedente, sabendo que a constante universal dos gases vale 0,082 atm·L·mol-1 ·K-1 , a constante de Faraday, 96.500 C·mol-1 , a constante de autoprotólise da água, 1,0 × 10-14, e assumindo que todos os gases e soluções envolvidos se comportem idealmente, julgue o item que se segue.

Considere-se que um automóvel movido a H2 (g) possua um reservatório com capacidade para 100 L do gás e apresente um consumo médio de 1,0 kg de H2 a cada 100 km percorridos. Considere-se, também, que, no momento do abastecimento com o gás, o reservatório esteja na temperatura de 300 K. Nessas condições, para que o automóvel possa percorrer 600 km sem necessitar de novo abastecimento, o gás deverá estar armazenado a uma pressão superior a 600 atm.  
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108399 Química
Dois dos obstáculos para a disseminação do emprego das células a combustível são: a obtenção do H2 de forma sustentável e a dificuldade de armazenamento do H2 (g), visto que pressões muito elevadas do gás são necessárias para a obtenção de densidades energéticas consideradas viáveis para a aplicação veicular. Tradicionalmente, a maioria do H2 empregado no mundo é produzida pela reforma do metano de origem fóssil, processo que resulta em intensa geração de CO2. Por esse motivo, tem-se buscado otimizar a produção do denominado hidrogênio verde, obtido por meio da eletrólise da água, utilizando-se energia elétrica gerada de maneira sustentável (por exemplo, a partir de placas de energia solar). No processo, uma corrente elétrica é aplicada a uma solução aquosa (usualmente uma solução de NaOH), de forma que as semirreações representadas a seguir ocorrem nos eletrodos.

catodo: 2 H3O+ + 2 e- → H2 + 2 H2O
anodo: 2 OH → H2O + ½ O2 + 2 e-
Tendo como referência o texto precedente, sabendo que a constante universal dos gases vale 0,082 atm·L·mol-1 ·K-1 , a constante de Faraday, 96.500 C·mol-1 , a constante de autoprotólise da água, 1,0 × 10-14, e assumindo que todos os gases e soluções envolvidos se comportem idealmente, julgue o item que se segue.

Uma solução de NaOH apresenta pressão de vapor superior à da água pura na mesma temperatura.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108398 Química
Dois dos obstáculos para a disseminação do emprego das células a combustível são: a obtenção do H2 de forma sustentável e a dificuldade de armazenamento do H2 (g), visto que pressões muito elevadas do gás são necessárias para a obtenção de densidades energéticas consideradas viáveis para a aplicação veicular. Tradicionalmente, a maioria do H2 empregado no mundo é produzida pela reforma do metano de origem fóssil, processo que resulta em intensa geração de CO2. Por esse motivo, tem-se buscado otimizar a produção do denominado hidrogênio verde, obtido por meio da eletrólise da água, utilizando-se energia elétrica gerada de maneira sustentável (por exemplo, a partir de placas de energia solar). No processo, uma corrente elétrica é aplicada a uma solução aquosa (usualmente uma solução de NaOH), de forma que as semirreações representadas a seguir ocorrem nos eletrodos.

catodo: 2 H3O+ + 2 e- → H2 + 2 H2O
anodo: 2 OH → H2O + ½ O2 + 2 e-
Tendo como referência o texto precedente, sabendo que a constante universal dos gases vale 0,082 atm·L·mol-1 ·K-1 , a constante de Faraday, 96.500 C·mol-1 , a constante de autoprotólise da água, 1,0 × 10-14, e assumindo que todos os gases e soluções envolvidos se comportem idealmente, julgue o item que se segue.

Se a concentração de uma solução de NaOH for de 0,10 mol/L, então o pH dessa solução será superior a 10. 
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108397 Química
Em 1839, Sir William Grove inventou a primeira célula a combustível. Ele sabia que, ao passar uma corrente elétrica através da água, ela poderia ser dividida em hidrogênio e oxigênio (um processo chamado eletrólise). Ele levantou a hipótese de que, invertendo-se o procedimento, seria possível produzir eletricidade e água. Ele criou uma célula a combustível primitiva e a chamou de bateria voltaica a gás. Depois de experimentar sua nova invenção, Grove comprovou sua hipótese. Cinquenta anos depois, os cientistas Ludwig Mond e Charles Langer cunharam o termo “célula a combustível” enquanto tentavam construir um modelo prático para produzir eletricidade.





Células a combustível são excelentes para a utilização do hidrogênio como alternativa aos combustíveis fósseis, considerados “vilões” do aquecimento global. Elas funcionam da seguinte forma: o anodo, o polo negativo da célula, conduz os elétrons liberados das moléculas de hidrogênio para um circuito elétrico. O catodo, o polo positivo da célula, possui canais nele gravados que distribuem o oxigênio para a superfície do catalisador. O catodo também conduz os elétrons do circuito elétrico para o catalisador, onde eles se unem aos íons hidrogênio e ao oxigênio para formar água. 

Tendo o texto precedente como referência inicial, julgue o item.


O hidrogênio é o elemento mais comum no universo; no entanto, sob a forma de substância simples (H2), ele é muito raro na Terra. Para ser usado em células a combustível, o hidrogênio puro deve ser obtido a partir de compostos de hidrogênio, incluindo-se os hidrocarbonetos fósseis. Por isso, críticos dessa tecnologia argumentam que o hidrogênio não pode ser caracterizado como um combustível “verde”, pois essa fonte energética consome hidrocarbonetos fósseis, assim como os combustíveis convencionais. Com base nesse contexto, redija um texto dissertativo, com argumento próprio, concordando ou discordando do utilizado pelos críticos da tecnologia das células a combustível.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108396 Química
Em 1839, Sir William Grove inventou a primeira célula a combustível. Ele sabia que, ao passar uma corrente elétrica através da água, ela poderia ser dividida em hidrogênio e oxigênio (um processo chamado eletrólise). Ele levantou a hipótese de que, invertendo-se o procedimento, seria possível produzir eletricidade e água. Ele criou uma célula a combustível primitiva e a chamou de bateria voltaica a gás. Depois de experimentar sua nova invenção, Grove comprovou sua hipótese. Cinquenta anos depois, os cientistas Ludwig Mond e Charles Langer cunharam o termo “célula a combustível” enquanto tentavam construir um modelo prático para produzir eletricidade.





Células a combustível são excelentes para a utilização do hidrogênio como alternativa aos combustíveis fósseis, considerados “vilões” do aquecimento global. Elas funcionam da seguinte forma: o anodo, o polo negativo da célula, conduz os elétrons liberados das moléculas de hidrogênio para um circuito elétrico. O catodo, o polo positivo da célula, possui canais nele gravados que distribuem o oxigênio para a superfície do catalisador. O catodo também conduz os elétrons do circuito elétrico para o catalisador, onde eles se unem aos íons hidrogênio e ao oxigênio para formar água. 

Tendo o texto precedente como referência inicial, julgue o item.


Na célula a combustível, a função do catalisador é reagir com os íons hidrogênio, com a molécula de oxigênio e com os elétrons recebidos do anodo para gerar energia.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108395 Química
Em 1839, Sir William Grove inventou a primeira célula a combustível. Ele sabia que, ao passar uma corrente elétrica através da água, ela poderia ser dividida em hidrogênio e oxigênio (um processo chamado eletrólise). Ele levantou a hipótese de que, invertendo-se o procedimento, seria possível produzir eletricidade e água. Ele criou uma célula a combustível primitiva e a chamou de bateria voltaica a gás. Depois de experimentar sua nova invenção, Grove comprovou sua hipótese. Cinquenta anos depois, os cientistas Ludwig Mond e Charles Langer cunharam o termo “célula a combustível” enquanto tentavam construir um modelo prático para produzir eletricidade.





Células a combustível são excelentes para a utilização do hidrogênio como alternativa aos combustíveis fósseis, considerados “vilões” do aquecimento global. Elas funcionam da seguinte forma: o anodo, o polo negativo da célula, conduz os elétrons liberados das moléculas de hidrogênio para um circuito elétrico. O catodo, o polo positivo da célula, possui canais nele gravados que distribuem o oxigênio para a superfície do catalisador. O catodo também conduz os elétrons do circuito elétrico para o catalisador, onde eles se unem aos íons hidrogênio e ao oxigênio para formar água. 

Tendo o texto precedente como referência inicial, julgue o item.


A reação eletroquímica que ocorre em uma célula a combustível produz CO2 e H2O.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108394 Química
Em 1839, Sir William Grove inventou a primeira célula a combustível. Ele sabia que, ao passar uma corrente elétrica através da água, ela poderia ser dividida em hidrogênio e oxigênio (um processo chamado eletrólise). Ele levantou a hipótese de que, invertendo-se o procedimento, seria possível produzir eletricidade e água. Ele criou uma célula a combustível primitiva e a chamou de bateria voltaica a gás. Depois de experimentar sua nova invenção, Grove comprovou sua hipótese. Cinquenta anos depois, os cientistas Ludwig Mond e Charles Langer cunharam o termo “célula a combustível” enquanto tentavam construir um modelo prático para produzir eletricidade.





Células a combustível são excelentes para a utilização do hidrogênio como alternativa aos combustíveis fósseis, considerados “vilões” do aquecimento global. Elas funcionam da seguinte forma: o anodo, o polo negativo da célula, conduz os elétrons liberados das moléculas de hidrogênio para um circuito elétrico. O catodo, o polo positivo da célula, possui canais nele gravados que distribuem o oxigênio para a superfície do catalisador. O catodo também conduz os elétrons do circuito elétrico para o catalisador, onde eles se unem aos íons hidrogênio e ao oxigênio para formar água. 

Tendo o texto precedente como referência inicial, julgue o item.


Na reação que ocorre na célula a combustível, o hidrogênio é o agente oxidante e o oxigênio, o agente redutor.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108393 Química
Em 1839, Sir William Grove inventou a primeira célula a combustível. Ele sabia que, ao passar uma corrente elétrica através da água, ela poderia ser dividida em hidrogênio e oxigênio (um processo chamado eletrólise). Ele levantou a hipótese de que, invertendo-se o procedimento, seria possível produzir eletricidade e água. Ele criou uma célula a combustível primitiva e a chamou de bateria voltaica a gás. Depois de experimentar sua nova invenção, Grove comprovou sua hipótese. Cinquenta anos depois, os cientistas Ludwig Mond e Charles Langer cunharam o termo “célula a combustível” enquanto tentavam construir um modelo prático para produzir eletricidade.





Células a combustível são excelentes para a utilização do hidrogênio como alternativa aos combustíveis fósseis, considerados “vilões” do aquecimento global. Elas funcionam da seguinte forma: o anodo, o polo negativo da célula, conduz os elétrons liberados das moléculas de hidrogênio para um circuito elétrico. O catodo, o polo positivo da célula, possui canais nele gravados que distribuem o oxigênio para a superfície do catalisador. O catodo também conduz os elétrons do circuito elétrico para o catalisador, onde eles se unem aos íons hidrogênio e ao oxigênio para formar água. 

Tendo o texto precedente como referência inicial, julgue o item.



Considerando-se que a membrana trocadora de prótons, mencionada no texto, seja formada pelo material cuja fórmula estrutural é mostrada a seguir, então, nesse caso, tal material pode ser corretamente caracterizado como um copolímero.



Imagem associada para resolução da questão

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108392 Química
Em 1839, Sir William Grove inventou a primeira célula a combustível. Ele sabia que, ao passar uma corrente elétrica através da água, ela poderia ser dividida em hidrogênio e oxigênio (um processo chamado eletrólise). Ele levantou a hipótese de que, invertendo-se o procedimento, seria possível produzir eletricidade e água. Ele criou uma célula a combustível primitiva e a chamou de bateria voltaica a gás. Depois de experimentar sua nova invenção, Grove comprovou sua hipótese. Cinquenta anos depois, os cientistas Ludwig Mond e Charles Langer cunharam o termo “célula a combustível” enquanto tentavam construir um modelo prático para produzir eletricidade.





Células a combustível são excelentes para a utilização do hidrogênio como alternativa aos combustíveis fósseis, considerados “vilões” do aquecimento global. Elas funcionam da seguinte forma: o anodo, o polo negativo da célula, conduz os elétrons liberados das moléculas de hidrogênio para um circuito elétrico. O catodo, o polo positivo da célula, possui canais nele gravados que distribuem o oxigênio para a superfície do catalisador. O catodo também conduz os elétrons do circuito elétrico para o catalisador, onde eles se unem aos íons hidrogênio e ao oxigênio para formar água. 

Tendo o texto precedente como referência inicial, julgue o item.


As semirreações que ocorrem no anodo e no catodo são apresentadas a seguir, conforme as informações do texto.


anodo: 2 H2 → 4 H+ + 4 e

catodo: O2 + 4 H+ + 4 e → 2 H2O

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108391 Física


Avanços da tecnologia têm permitido o desenvolvimento de novas formas de geração de energia sustentável. Dois processos usuais de transformação de energia solar em energia elétrica são ilustrados nas figuras I e II, precedentes: a conversão de energia solar com a utilização de espelhos côncavos e a conversão de energia eólica com a utilização da velocidade do vento, respectivamente.

No método de geração de energia representado na figura I, um processo conhecido como concentração solar, espelhos côncavos são usados para concentrar a luz solar em um ponto focal (acumulador de energia), onde a energia solar é transformada em calor e, em seguida, convertida em eletricidade. Esse processo é frequentemente utilizado em usinas de energia solar termossolares.

Na geração de energia representada na figura II, a partir do rotor da hélice, a energia cinética do vento é convertida em energia mecânica. Um multiplicador de velocidade, conjunto de engrenagens sem escorregamento, transforma a rotação lenta das hélices (20 rotações por minuto) em uma rotação mais rápida (1.800 rotações por minuto) capaz de operar o gerador de eletricidade. A quantidade da energia que o vento transfere para o rotor dependerá da densidade do ar (p), da área circular de varredura do rotor (A = 9.000 m2 ) e do deslocamento de uma massa de ar (m) a uma velocidade (v). A potência do vento (Pv) associada ao deslocamento da massa de ar é definida por Pv = 1/2 ∆m/∆t ve o fluxo de massa de ar que atravessa as pás do rotor é dado por ∆m/∆t = pAv
Tendo como referência as figuras I e II e as informações precedentes, e considerando que a densidade do ar seja 1,2 kg m-3, julgue o próximo item.

A partir das informações apresentadas, infere-se que a potência de geração elétrica da torre de energia eólica é superior a 60 kW.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108390 Física


Avanços da tecnologia têm permitido o desenvolvimento de novas formas de geração de energia sustentável. Dois processos usuais de transformação de energia solar em energia elétrica são ilustrados nas figuras I e II, precedentes: a conversão de energia solar com a utilização de espelhos côncavos e a conversão de energia eólica com a utilização da velocidade do vento, respectivamente.

No método de geração de energia representado na figura I, um processo conhecido como concentração solar, espelhos côncavos são usados para concentrar a luz solar em um ponto focal (acumulador de energia), onde a energia solar é transformada em calor e, em seguida, convertida em eletricidade. Esse processo é frequentemente utilizado em usinas de energia solar termossolares.

Na geração de energia representada na figura II, a partir do rotor da hélice, a energia cinética do vento é convertida em energia mecânica. Um multiplicador de velocidade, conjunto de engrenagens sem escorregamento, transforma a rotação lenta das hélices (20 rotações por minuto) em uma rotação mais rápida (1.800 rotações por minuto) capaz de operar o gerador de eletricidade. A quantidade da energia que o vento transfere para o rotor dependerá da densidade do ar (p), da área circular de varredura do rotor (A = 9.000 m2 ) e do deslocamento de uma massa de ar (m) a uma velocidade (v). A potência do vento (Pv) associada ao deslocamento da massa de ar é definida por Pv = 1/2 ∆m/∆t ve o fluxo de massa de ar que atravessa as pás do rotor é dado por ∆m/∆t = pAv
Tendo como referência as figuras I e II e as informações precedentes, e considerando que a densidade do ar seja 1,2 kg m-3, julgue o próximo item.

Pela configuração do equipamento representado na figura II, conclui-se que a razão entre os raios das engrenagens do rotor e do gerador é maior que 80.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108389 Física


Avanços da tecnologia têm permitido o desenvolvimento de novas formas de geração de energia sustentável. Dois processos usuais de transformação de energia solar em energia elétrica são ilustrados nas figuras I e II, precedentes: a conversão de energia solar com a utilização de espelhos côncavos e a conversão de energia eólica com a utilização da velocidade do vento, respectivamente.

No método de geração de energia representado na figura I, um processo conhecido como concentração solar, espelhos côncavos são usados para concentrar a luz solar em um ponto focal (acumulador de energia), onde a energia solar é transformada em calor e, em seguida, convertida em eletricidade. Esse processo é frequentemente utilizado em usinas de energia solar termossolares.

Na geração de energia representada na figura II, a partir do rotor da hélice, a energia cinética do vento é convertida em energia mecânica. Um multiplicador de velocidade, conjunto de engrenagens sem escorregamento, transforma a rotação lenta das hélices (20 rotações por minuto) em uma rotação mais rápida (1.800 rotações por minuto) capaz de operar o gerador de eletricidade. A quantidade da energia que o vento transfere para o rotor dependerá da densidade do ar (p), da área circular de varredura do rotor (A = 9.000 m2 ) e do deslocamento de uma massa de ar (m) a uma velocidade (v). A potência do vento (Pv) associada ao deslocamento da massa de ar é definida por Pv = 1/2 ∆m/∆t ve o fluxo de massa de ar que atravessa as pás do rotor é dado por ∆m/∆t = pAv
Tendo como referência as figuras I e II e as informações precedentes, e considerando que a densidade do ar seja 1,2 kg m-3, julgue o próximo item.

Se um objeto estiver localizado no eixo óptico do espelho côncavo e a uma distância maior que a distância focal, então a imagem formada será real.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108388 Física


Avanços da tecnologia têm permitido o desenvolvimento de novas formas de geração de energia sustentável. Dois processos usuais de transformação de energia solar em energia elétrica são ilustrados nas figuras I e II, precedentes: a conversão de energia solar com a utilização de espelhos côncavos e a conversão de energia eólica com a utilização da velocidade do vento, respectivamente.

No método de geração de energia representado na figura I, um processo conhecido como concentração solar, espelhos côncavos são usados para concentrar a luz solar em um ponto focal (acumulador de energia), onde a energia solar é transformada em calor e, em seguida, convertida em eletricidade. Esse processo é frequentemente utilizado em usinas de energia solar termossolares.

Na geração de energia representada na figura II, a partir do rotor da hélice, a energia cinética do vento é convertida em energia mecânica. Um multiplicador de velocidade, conjunto de engrenagens sem escorregamento, transforma a rotação lenta das hélices (20 rotações por minuto) em uma rotação mais rápida (1.800 rotações por minuto) capaz de operar o gerador de eletricidade. A quantidade da energia que o vento transfere para o rotor dependerá da densidade do ar (p), da área circular de varredura do rotor (A = 9.000 m2 ) e do deslocamento de uma massa de ar (m) a uma velocidade (v). A potência do vento (Pv) associada ao deslocamento da massa de ar é definida por Pv = 1/2 ∆m/∆t ve o fluxo de massa de ar que atravessa as pás do rotor é dado por ∆m/∆t = pAv
Tendo como referência as figuras I e II e as informações precedentes, e considerando que a densidade do ar seja 1,2 kg m-3, julgue o próximo item.

Os raios solares que incidem paralelos ao eixo óptico (eixo principal) do espelho côncavo convergem para o ponto central do espelho.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108387 Física


Avanços da tecnologia têm permitido o desenvolvimento de novas formas de geração de energia sustentável. Dois processos usuais de transformação de energia solar em energia elétrica são ilustrados nas figuras I e II, precedentes: a conversão de energia solar com a utilização de espelhos côncavos e a conversão de energia eólica com a utilização da velocidade do vento, respectivamente.

No método de geração de energia representado na figura I, um processo conhecido como concentração solar, espelhos côncavos são usados para concentrar a luz solar em um ponto focal (acumulador de energia), onde a energia solar é transformada em calor e, em seguida, convertida em eletricidade. Esse processo é frequentemente utilizado em usinas de energia solar termossolares.

Na geração de energia representada na figura II, a partir do rotor da hélice, a energia cinética do vento é convertida em energia mecânica. Um multiplicador de velocidade, conjunto de engrenagens sem escorregamento, transforma a rotação lenta das hélices (20 rotações por minuto) em uma rotação mais rápida (1.800 rotações por minuto) capaz de operar o gerador de eletricidade. A quantidade da energia que o vento transfere para o rotor dependerá da densidade do ar (p), da área circular de varredura do rotor (A = 9.000 m2 ) e do deslocamento de uma massa de ar (m) a uma velocidade (v). A potência do vento (Pv) associada ao deslocamento da massa de ar é definida por Pv = 1/2 ∆m/∆t ve o fluxo de massa de ar que atravessa as pás do rotor é dado por ∆m/∆t = pAv
Tendo como referência as figuras I e II e as informações precedentes, e considerando que a densidade do ar seja 1,2 kg m-3, julgue o próximo item.

No gerador desenvolvido a partir de energia eólica, ocorre um processo de conversão de energia mecânica em energia elétrica.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108386 Química
Uma das formas de se prevenir o aquecimento global é a utilização de fontes energéticas obtidas a partir da biomassa. Embora os combustíveis renováveis obtidos da biomassa emitam CO2 na atmosfera assim como os combustíveis fósseis, a produção de biomassa “sequestra” esse CO2 de volta, pois essa molécula é utilizada pelas plantas no processo de fotossíntese. A fotossíntese produz moléculas orgânicas complexas, como glicose, celulose, amido, aminoácidos, proteínas, entre outros constituintes dos vegetais, na presença de clorofila e luz solar. A reação genérica da fotossíntese é representada a seguir, em que (CH2O)n representa um carboidrato genérico.


n CO2 + n H2O + luz solar → (CH2O)n + n O2


Durante a fotossíntese, os primeiros carboidratos produzidos são os açúcares de três carbonos, como o gliceraldeído, por exemplo, cuja fórmula estrutural é mostrada a seguir. 



Cerca de 33% da biomassa do planeta é formada por celulose, cuja fórmula estrutural é mostrada a seguir. A celulose é um polissacarídeo formado pela união de moléculas de β-glicose, por meio de ligações β-1,4-glicosídicas.


Sabendo-se que a sacarose é um carboidrato com seis carbonos e considerando-se apenas o CO2 utilizado na produção de sacarose por meio da fotossíntese, é correto inferir que, na produção de uma tonelada de sacarose, será retirada da atmosfera uma quantidade de CO2
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108385 Química
Uma das formas de se prevenir o aquecimento global é a utilização de fontes energéticas obtidas a partir da biomassa. Embora os combustíveis renováveis obtidos da biomassa emitam CO2 na atmosfera assim como os combustíveis fósseis, a produção de biomassa “sequestra” esse CO2 de volta, pois essa molécula é utilizada pelas plantas no processo de fotossíntese. A fotossíntese produz moléculas orgânicas complexas, como glicose, celulose, amido, aminoácidos, proteínas, entre outros constituintes dos vegetais, na presença de clorofila e luz solar. A reação genérica da fotossíntese é representada a seguir, em que (CH2O)n representa um carboidrato genérico.


n CO2 + n H2O + luz solar → (CH2O)n + n O2


Durante a fotossíntese, os primeiros carboidratos produzidos são os açúcares de três carbonos, como o gliceraldeído, por exemplo, cuja fórmula estrutural é mostrada a seguir. 



Cerca de 33% da biomassa do planeta é formada por celulose, cuja fórmula estrutural é mostrada a seguir. A celulose é um polissacarídeo formado pela união de moléculas de β-glicose, por meio de ligações β-1,4-glicosídicas.


Com base nas informações do texto antecedente, julgue o item.


O gráfico a seguir representa corretamente a variação de entalpia da reação da fotossíntese ao longo da reação.


Imagem associada para resolução da questão

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108384 Química
Uma das formas de se prevenir o aquecimento global é a utilização de fontes energéticas obtidas a partir da biomassa. Embora os combustíveis renováveis obtidos da biomassa emitam CO2 na atmosfera assim como os combustíveis fósseis, a produção de biomassa “sequestra” esse CO2 de volta, pois essa molécula é utilizada pelas plantas no processo de fotossíntese. A fotossíntese produz moléculas orgânicas complexas, como glicose, celulose, amido, aminoácidos, proteínas, entre outros constituintes dos vegetais, na presença de clorofila e luz solar. A reação genérica da fotossíntese é representada a seguir, em que (CH2O)n representa um carboidrato genérico.


n CO2 + n H2O + luz solar → (CH2O)n + n O2


Durante a fotossíntese, os primeiros carboidratos produzidos são os açúcares de três carbonos, como o gliceraldeído, por exemplo, cuja fórmula estrutural é mostrada a seguir. 



Cerca de 33% da biomassa do planeta é formada por celulose, cuja fórmula estrutural é mostrada a seguir. A celulose é um polissacarídeo formado pela união de moléculas de β-glicose, por meio de ligações β-1,4-glicosídicas.


Com base nas informações do texto antecedente, julgue o item.


A hidrólise completa da celulose produz como único produto orgânico a glicose.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108383 Química
Uma das formas de se prevenir o aquecimento global é a utilização de fontes energéticas obtidas a partir da biomassa. Embora os combustíveis renováveis obtidos da biomassa emitam CO2 na atmosfera assim como os combustíveis fósseis, a produção de biomassa “sequestra” esse CO2 de volta, pois essa molécula é utilizada pelas plantas no processo de fotossíntese. A fotossíntese produz moléculas orgânicas complexas, como glicose, celulose, amido, aminoácidos, proteínas, entre outros constituintes dos vegetais, na presença de clorofila e luz solar. A reação genérica da fotossíntese é representada a seguir, em que (CH2O)n representa um carboidrato genérico.


n CO2 + n H2O + luz solar → (CH2O)n + n O2


Durante a fotossíntese, os primeiros carboidratos produzidos são os açúcares de três carbonos, como o gliceraldeído, por exemplo, cuja fórmula estrutural é mostrada a seguir. 



Cerca de 33% da biomassa do planeta é formada por celulose, cuja fórmula estrutural é mostrada a seguir. A celulose é um polissacarídeo formado pela união de moléculas de β-glicose, por meio de ligações β-1,4-glicosídicas.


Com base nas informações do texto antecedente, julgue o item.


Na presença de hidrogênio molecular (H2) e níquel (Ni), o gliceraldeído pode ser transformado na molécula representada a seguir.



Imagem associada para resolução da questão

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108382 Química
Uma das formas de se prevenir o aquecimento global é a utilização de fontes energéticas obtidas a partir da biomassa. Embora os combustíveis renováveis obtidos da biomassa emitam CO2 na atmosfera assim como os combustíveis fósseis, a produção de biomassa “sequestra” esse CO2 de volta, pois essa molécula é utilizada pelas plantas no processo de fotossíntese. A fotossíntese produz moléculas orgânicas complexas, como glicose, celulose, amido, aminoácidos, proteínas, entre outros constituintes dos vegetais, na presença de clorofila e luz solar. A reação genérica da fotossíntese é representada a seguir, em que (CH2O)n representa um carboidrato genérico.


n CO2 + n H2O + luz solar → (CH2O)n + n O2


Durante a fotossíntese, os primeiros carboidratos produzidos são os açúcares de três carbonos, como o gliceraldeído, por exemplo, cuja fórmula estrutural é mostrada a seguir. 



Cerca de 33% da biomassa do planeta é formada por celulose, cuja fórmula estrutural é mostrada a seguir. A celulose é um polissacarídeo formado pela união de moléculas de β-glicose, por meio de ligações β-1,4-glicosídicas.


Com base nas informações do texto antecedente, julgue o item.


O gliceraldeído possui uma forma levógira e uma forma dextrógira.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108381 Química
Uma das formas de se prevenir o aquecimento global é a utilização de fontes energéticas obtidas a partir da biomassa. Embora os combustíveis renováveis obtidos da biomassa emitam CO2 na atmosfera assim como os combustíveis fósseis, a produção de biomassa “sequestra” esse CO2 de volta, pois essa molécula é utilizada pelas plantas no processo de fotossíntese. A fotossíntese produz moléculas orgânicas complexas, como glicose, celulose, amido, aminoácidos, proteínas, entre outros constituintes dos vegetais, na presença de clorofila e luz solar. A reação genérica da fotossíntese é representada a seguir, em que (CH2O)n representa um carboidrato genérico.


n CO2 + n H2O + luz solar → (CH2O)n + n O2


Durante a fotossíntese, os primeiros carboidratos produzidos são os açúcares de três carbonos, como o gliceraldeído, por exemplo, cuja fórmula estrutural é mostrada a seguir. 



Cerca de 33% da biomassa do planeta é formada por celulose, cuja fórmula estrutural é mostrada a seguir. A celulose é um polissacarídeo formado pela união de moléculas de β-glicose, por meio de ligações β-1,4-glicosídicas.


Com base nas informações do texto antecedente, julgue o item.


A despeito de sua denominação, o gliceraldeído não é um aldeído na acepção da palavra dada pela química orgânica.

Alternativas
Respostas
1261: C
1262: E
1263: C
1264: C
1265: E
1266: E
1267: E
1268: C
1269: C
1270: E
1271: C
1272: C
1273: E
1274: C
1275: C
1276: E
1277: C
1278: C
1279: C
1280: E