Questões Militares de Física - Campo e Força Magnética
Foram encontradas 103 questões
Observe a figura a seguir.
Uma partícula de carga negativa q e massa m penetra com
velocidade pelo orifício X em uma região de campo
magnético uniforme, e desta região sai pelo orifício Y,
conforme indica a figura acima. Observe que a velocidade da
partícula é perpendicular às linhas de campo magnético.
Desprezando os efeitos gravitacionais e considerando
(q/m) = 1,2.1011C/kg, B = 1,0.10-2
T e v = 6,0.106m/s, a distância D
entre os orifícios X e Y é igual a quantos milímetros?
Considerando as informações acima e os conceitos de eletricidade e magnetismo, identifique como verdadeiras (V) ou falsas (F) as seguintes afirmativas:
( ) A partícula da trajetória II possui carga positiva e a da trajetória IV possui carga negativa.
( ) Supondo que todas as partículas tenham mesma carga, a da trajetória II tem maior massa que a da trajetória I.
( ) Supondo que todas as partículas tenham mesma massa, a da trajetória III tem maior carga que a da trajetória II.
( ) Se o módulo do campo magnético B fosse aumentado, todas as trajetórias teriam um raio maior.
Uma partícula de massa m e carga + Q encontra-se confinada no plano XY entre duas lâminas infinitas de vidro, movimentando-se sem atrito com vetor velocidade (v,0,0) no instante t = 0, quando um dispositivo externo passa a gerar um campo magnético dependente do tempo, cujo vetor é (f(t),f(t),B), onde B é uma constante. Pode-se afirmar que a força normal exercida sobre as lâminas é nula quando t é
Consideração:
• desconsidere o efeito gravitacional.
Analise a figura a seguir.
Um campo magnético uniforme de 0,05ax Wb/m atravessa a espira ABCD, conforme a figura acima. Considerando que o lado CD está girando em torno do eixo z, com velocidade angular IOOπ rad/s, e, no instante t=0, a espira encontra-se no plano x=0, determine a força eletromotriz induzida quando t= 5,0 ms e assinale a opção correta.
Considere as seguintes proposições sobre campos magnéticos:
II. Ao se aproximar um ímã de uma porção de limalha de ferro, esta se movimenta porque o campo magnético do ímã realiza trabalho sobre ela.
III. Dois fios paralelos por onde passam correntes uniformes num mesmo sentido se atraem.
Então,
Uma espira condutora retangular rígida move-se, com velocidade vetorial constante, totalmente imersa numa região na qual existe um campo de indução magnética , uniforme, constante no tempo, e perpendicular ao plano que contém tanto a espira como seu vetor velocidade. Observa-se que a corrente induzida na espira é nula. Podemos afirmar que tal fenômeno ocorre em razão de o
Michael Faraday foi um cientista inglês que viveu no século XIX. Através de suas descobertas foram estabelecidas as bases do eletromagnetismo, relacionando fenômenos da eletricidade, eletroquímica e magnetismo. Suas invenções permitiram o desenvolvimento do gerador elétrico, e foi graças a seus esforços que a eletricidade tornou-se uma tecnologia de uso prático. Em sua homenagem uma das quatro leis do eletromagnetismo leva seu nome e pode ser expressa como:
ε = ΔΦ/Δt onde ε é a força eletromotriz induzida em um circuito, ∅ é o fluxo magnético através desse circuito e t é o tempo.
Considere a figura ao lado, que representa um ímã próximo a um anel condutor e um observador na posição O. O ímã pode se deslocar ao longo do eixo do anel e a distância entre o polo norte e o centro do anel é d. Tendo em vista essas informações, identifique as seguintes afirmativas como verdadeiras (V) ou falsas (F):
( ) Mantendo-se a distância d constante se observará o surgimento de uma corrente induzida no anel no sentido horário.
( ) Durante a aproximação do ímã à espira, observa-se o surgimento de uma corrente induzida no anel no sentido horário.
( ) Durante o afastamento do ímã em relação à espira, observa-se o surgimento de uma corrente induzida no anel no sentido horário.
( ) Girando-se o anel em torno do eixo z, observa-se o surgimento de uma corrente induzida.
Assinale a alternativa que apresenta a sequência correta, de cima para baixo.
Um objeto de massa m e carga +q faz um movimento circular uniforme, com velocidade escalar tangencial v, preso a um trilho sem atrito de raio r. Sabendo que o objeto está sujeito a um campomagnético de módulo B, paralelo ao plano do trilho conforme mostra a figura, o módulo da força normalcontra o trilho, em função de Ɵ é
Desejando-se determinar a intensidade do campo magnético no interior de um solenóide longo percorrido por uma corrente elétrica constante, um professor de física construiu um aparato experimental que consistia, além do solenóide, de uma balança de braços isolantes e iguais a d1 e d2 , sendo que o prato em uma das extremidades foi substituído por uma espira quadrada de lado l, conforme indicado na figura abaixo.
Quando não circula corrente na espira, a balança se
encontra em equilíbrio e o plano da espira está na
horizontal. Ao fazer passar pela espira uma corrente elétrica
constante i, o equilíbrio da balança é restabelecido ao
colocar no prato uma massa m . Sendo g o módulo do
campo gravitacional local, o campo magnético no interior do
solenóide é dado pela expressão
Um capacitor de placas paralelas carregado gera um campo elétrico constante em seu interior. Num instante inicial, uma partícula de massa m e carga +Q, localizada no interior do capacitor, é liberada com velocidade nula. Neste mesmo instante, o capacitor começa a girar com velocidade angular constante ω em torno do eixo z. Enquanto estiver no interior do capacitor e antes de colidir com uma das placas, a trajetória da carga será uma
Observação:
• desconsidere as ações dos campos magnético e gravitacional.
A Figura 1 apresenta um sistema composto por um trilho fixo em U e uma barra móvel que se desloca na vertival com velocidade v suspensa por um balão de massa desprezível. O trilho e a barra são condutores elétricos e parmenecem sempre em contato sem atrito. Este conjunto está em uma região sujeita a uma densidade de fluxo magnético que forma com a horizontal uma ângulo θ, como ilustrado na Figura 2.
Diante do exposto, o valor da corrente induzida no sistema, em ampères, no estado estacionário é:
• massa da barra: 1 kg;
• aceleração da gravidade g: 10 m/s2 ;
• ângulo θ entre a horizontal e o vetor B: 60° ;
• massa específica do ar: 1,2 kg/m3 ;
• volume constante do balão: 0,5 m3 ;
• comprimento da barra entre os trilhos: 0,2 m;
• densidade de fluxo magnético B: 4 T.
Observação:
• despreze a massa do balão com o hélio e o atrito entre a barra e os trilhos.
y = x2 - 9x + 3
Sabe-se que, em XY, um campo magnético uniforme paralelo ao vetor (3B, B) provoca força sobre a partícula. O ponto onde a partícula é submetida ao maior módulo de força magnética é
Num ponto P do plano xy, situado a uma distância d de cada um dos fios, lança-se uma partícula, com carga elétrica positiva q na direção do eixo y, cuja velocidade tem módulo igual a v.
Sendo , a permeabilidade absoluta do meio e considerando desprezível a força de interação entre as correntes elétricas nos fios, a força magnética que atua sobre essa partícula, imediatamente após o lançamento, tem módulo igual a
eletromagnetismo.