Questões Militares de Física - Dinâmica
Foram encontradas 734 questões
Um casal de patinadores faz uma apresentação de patinação artística no gelo, quando, em dado momento, estando os dois em repouso, o homem, de 72 kg, empurra sua companheira, de 48 kg, na horizontal e ela passa a se mover a uma velocidade de 18 km/h.
Considerando apenas as forças de interação entre o casal, qual é o impulso aplicado ao rapaz, em N.s, na interação entre eles?
Os freios representam uma parte essencial do sistema de um automóvel e diversos acidentes são causados devido ao mau funcionamento desse equipamento. O freio ABS representou uma evolução muito importante no sistema de frenagem pois evita muitos acidentes: o carro consegue parar completamente percorrendo uma distância menor, uma vez que esse tipo de freio evita a derrapagem.
A seguir, representa-se esquematicamente como ocorre a variação da força de atrito entre o pneu e a pista em função da pressão aplicada no pedal de freio, utilizando sistema de frenagem sem ABS e com ABS, respectivamente:
De acordo com esses gráficos, assinale a alternativa que
apresenta a justificativa da maior eficiência no uso dos
freios ABS.
Mariana mora em uma cidade no interior de Minas Gerais e, em suas férias, resolveu visitar os Lençóis Maranhenses, famoso por suas dunas.
Disponível em: https://viajento.com/2017/12/15/lencoismaranhenses-como-se-formam-as-dunas-e-as-lagoas. Acesso em: 14 ago. 2021.
Devido aos altos preços dos passeios, ela resolveu utilizar seu próprio veículo para passear nas dunas. Porém, diferentemente do que acontece com os veículos próprios para esse passeio, o carro atolou nas areias, sendo necessário acionar um reboque.
Por que o carro de Mariana, diferentemente dos demais
transportes da região, atolou na areia?
O sistema desenhado a seguir está em equilíbrio estático. As cordas e a mola são ideais, a massa do corpo B vale 0,20 kg, a massa do corpo A vale M, o coeficiente de atrito estático entre o corpo A e a superfície horizontal é de 0,40 e as cordas CD e DE formam, entre si, um ângulo de 90°. A mola forma um ângulo α com a superfície vertical da parede conforme indicado no desenho abaixo. Sabendo que o sistema está na iminência de entrar em movimento e desprezando a resistência do ar, podemos afirmar que a tangente de α é igual a:
Um sistema A, em equilíbrio estático, está preso ao teto na vertical. Ele é constituído por três molas idênticas e ideais, cada uma com constante elástica respectivamente igual a K, e por duas massas m e M respectivamente. Em seguida, as três molas são trocadas por outras, cada uma com constante elástica respectivamente igual a 2K, e esse novo sistema B é posto em equilíbrio estático, preso ao teto na vertical, e com as massas m e M. Os sistemas estão representados no desenho abaixo. Podemos afirmar que o módulo da variação da energia mecânica da massa M do sistema A para o B, devido à troca das molas é de:
Dados: considere o módulo da aceleração da gravidade igual a g e despreze a força de resistência do ar.
Em uma escada, uma esfera é lançada com velocidade horizontal, de módulo V0, da extremidade do primeiro degrau de altura h em relação ao segundo degrau. A esfera atinge um ponto X na superfície perfeitamente lisa do segundo degrau, que tem um comprimento D, e, imediatamente, começa a deslizar sem rolar, também com velocidade horizontal V0 constante, até chegar na extremidade do segundo degrau. Ela, então, percorre uma altura 2h na vertical e atinge o solo a uma distância L da base do segundo degrau, conforme representado no desenho abaixo. Podemos afirmar que o intervalo de tempo que a esfera leva, deslizando sem rolar, na superfície lisa do segundo degrau é de:
Dados: despreze a força de resistência do ar e considere o módulo da aceleração da gravidade igual a g.
Desenho Ilustrativo – Fora de Escala
Sabendo que o coeficiente de atrito estático entre o bloco e a superfície do funil é 0,25, que senθ = 0,6, cosθ = 0,8 e adotando g = 10 m/s2 , o mínimo valor de ω para que o bloco não escorregue em relação à superfície do funil é, aproximadamente,
Pode-se afirmar que, ao se separarem, os módulos das velocidades escalares de A e B serão, respectivamente,
Desprezando a resistência do ar e o atrito entre o corpo de massa M e o plano inclinado, o valor da razão F1/F2 é
Considere que o projétil tenha sido lançado de uma distância muito próxima do pêndulo e que, após a colisão, esse pêndulo passe a oscilar em movimento harmônico simples, como indica a Figura 2, com amplitude A.
Desprezando a ação de forças dissipativas, o período de oscilação desse pêndulo, logo após a colisão, é dado por
Considerando as informações apresentadas, julgue o item a seguir.
A energia potencial da esfera perdida entre as trajetórias S1 e
S2 é menor que 45%.
Ao ser solta, a esfera é arremessada exatamente na vertical pela tira, e o contato entre ambas é perdido assim que a última atinge novamente seu formato horizontal. Que distância vertical, medida em metros, a esfera percorre desde o ponto mais baixo até o ponto mais alto? Despreze o atrito com o ar e considere g=10m/s2.
Após deslizar sobre a superfície, a esfera chega ao chão possuindo velocidade relativa à pista de módulo 3 m/s. Quanto mede a altura da pista em metros?
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Um projétil de massa 2m é disparado horizontalmente com velocidade de módulo v, conforme indica a Figura 1, e se movimenta com essa velocidade até que colide com um pêndulo simples, de comprimento L e massa m, inicialmente em repouso, em uma colisão perfeitamente elástica.
Considere que o projétil tenha sido lançado de uma distância muito próxima do pêndulo e que, após a colisão, esse pêndulo passe a oscilar em movimento harmônico simples, como indica a Figura 2, com amplitude A.
Desprezando a ação de forças dissipativas, o período de
oscilação desse pêndulo, logo após a colisão, é dado por
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Dois blocos, A e B, de dimensões desprezíveis são abandonados, partindo do repouso, do topo de um plano inclinado de 30º em relação à horizontal; percorrendo, depois de um mesmo intervalo de tempo, as distâncias indicadas conforme ilustra a figura seguinte.
Sejam µA e µB, os coeficientes de atrito cinético entre a
superfície do plano inclinado e os blocos A e B,
respectivamente. Considerando μA
= 2μB
, então μB
vale
Considere que o projétil tenha sido lançado de uma distância muito próxima do pêndulo e que, após a colisão, esse pêndulo passe a oscilar em movimento harmônico simples, como indica a Figura 2, com amplitude A.
Desprezando a ação de forças dissipativas, o período de oscilação desse pêndulo, logo após a colisão, é dado por
Sejam µA e µB, os coeficientes de atrito cinético entre a superfície do plano inclinado e os blocos A e B, respectivamente. Considerando μA = 2μB , então μB vale
Ao longo da descida, ao ser atingida determinada velocidade, o motorista põe o carro em “ponto-morto”, para poupar combustível. Olhando para o velocímetro, o motorista percebe que o carro desce o restante da ladeira com velocidade constante. Suponha que a massa do carro com seus ocupantes e os equipamentos seja de 1200 kg e considere g = 10 m/s2. Tendo em conta as distâncias indicadas na figura, o módulo da resultante das diversas forças de atrito que se opõem ao movimento do carro, enquanto ele desce a ladeira com velocidade constante, é de