Questões Militares de Física - Dinâmica
Foram encontradas 734 questões
Essas forças , e são tais que
Texto 1A3-I
Viaturas de bombeiros são adaptadas com equipamentos que permitem um trabalho eficiente, particularmente a tarefa de resgate. Uma escada rígida de comprimento L é unida ao ponto A, que permite tanto um travamento da posição do cesto, situado na ponta da escada, quanto um giro livre, sem atrito, até a posição horizontal. Na ponta da escada, representada por B, o cesto, de peso P, é elevado a uma altura h em relação à posição inicial. Para elevar a gaiola até h, um motor gira a escada em torno de A, em 2 segundos, com uma velocidade angular constante até o ângulo α e, então, trava a posição, atingindo-se equilíbrio estático. Considere que a força da gravidade local seja representada por g.
Texto 1A3-I
Viaturas de bombeiros são adaptadas com equipamentos que permitem um trabalho eficiente, particularmente a tarefa de resgate. Uma escada rígida de comprimento L é unida ao ponto A, que permite tanto um travamento da posição do cesto, situado na ponta da escada, quanto um giro livre, sem atrito, até a posição horizontal. Na ponta da escada, representada por B, o cesto, de peso P, é elevado a uma altura h em relação à posição inicial. Para elevar a gaiola até h, um motor gira a escada em torno de A, em 2 segundos, com uma velocidade angular constante até o ângulo α e, então, trava a posição, atingindo-se equilíbrio estático. Considere que a força da gravidade local seja representada por g.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Considere o referencial a seguir
A seguir a esfera é deslocada para baixo por um agente externo e abandonada na posição mostrada na figura 2. A partir daí, ela passa, sem emergir do líquido, a descrever um movimento harmônico
O carrinho A chegou ao ponto Q com velocidade de 8,0 m/s. Já o carrinho B manteve constante sua velocidade durante o percurso de P a Q. A intensidade da força de atrito entre os trilhos e as rodas do carrinho A foi de _____________ N e o coeficiente de atrito entre os trilhos e as rodas do carrinho B foi ___________.
A alternativa que preenche, correta e respectivamente, as lacunas é:
Determine a força que o pino exerce sobre a barra e marque a opção correta. (Considere a aceleração da gravidade g= 10 m/s2)
Sabendo que em t =0 s os dois sistemas estão na posição de amplitude máxima de seus movimentos, como na figura1 determine o tempo em segundos que eles levarão para se encontrarem novamente nessa mesma posição, e marque a opção correta. (Dados: k = 144 N/m; m = 4 kg; l = 10 cm ; A = 5 cm ; π = 3 ; g = 10 m/s2)
Quadruplicando a massa do bloco, qual seria a nova frequência de oscilação se a corda fosse posta a vibrar novamente no modo fundamental? ( Dado: g = 10 m/s2)
A uma distância d, existe uma carga q2 = q que está fixa. O sistema se encontra em equilíbrio com o fio formando um ângulo θ com a vertical e a mola na direção horizontal. Nessas condições, quanto vale a elongação ∆X da mola (considere a aceleração da gravidade como g e a constante de Coulomb como k)?
Na base do trilho existe um bloco 2, idêntico ao bloco 1 e em repouso. De que altura mínima o bloco 1 deve ser abandonado para que, após ocorrer uma colisão totalmente inelástica com o bloco 2, eles consigam percorrer toda extensão da circunferência sem se desprenderem dos trilhos? Considere que não há forças dissipativas atuando no sistema. Considere os blocos com dimensões . desprezíveis