Questões Militares de Física - Dinâmica
Foram encontradas 734 questões
Um soldado de massa igual a 60 kg está pendurado em uma corda. Por estar imóvel, ele é atingido por um projétil de 50 g disparado por um rifle. Até o instante do impacto, esse projétil possuía velocidade de módulo igual a 400 m/s e trajetória horizontal. O módulo da velocidade do soldado, logo após ser atingido pelo projétil é aproximadamente ____ m/s.
Considere
1-a colisão perfeitamente inelástica,
2-o projétil e o soldado um sistema isolado, e
3-que o projétil ficou alojado no colete de proteção utilizado pelo soldado e, portanto, o mesmo continuou vivo e dependurado na corda após ser atingido.
O desenho a seguir representa as forças que atuam em uma aeronave de 100 toneladas (combustível + passageiros + carga + avião) durante sua subida mantendo uma velocidade com módulo constante e igual a 1080 km/h e com um ângulo igual a 30° em relação à horizontal. Para manter essa velocidade e esse ângulo de subida, a potência gerada pela força de tração produzida pelo motor deve ser igual a ____ 106 watts. Considere
1) T = força de tração estabelecida pelo motor,
2) S = força de sustentação estabelecida pelo fluxo de ar nas asas,
3) P = força peso,
4) R = força de arrasto estabelecida pela resistência do ar ao deslocamento do avião. Considerada nessa questão igual a zero.
5) O módulo da aceleração da gravidade constante e igual a 10 m/s².
O desenho a seguir representa uma aeronave vista de frente onde estão indicadas as forças de sustentação nas asas direita (SD) e esquerda (SE); e a força peso (P). Assinale a alternativa que melhor representa as forças na situação em que o piloto queira iniciar um giro da aeronave no sentido horário e em torno do eixo imaginário “E” que passa pelo corpo da aeronave. Considere que durante o giro
1- não há modificação na quantidade ou distribuição de cargas, pessoas, combustível e na massa da aeronave,
2- o módulo da força peso é igual a soma dos módulos das forças de sustentação direita e esquerda( P = SD = SE ), ou seja, a aeronave está em vôo horizontal,
3- as forças de sustentação estão equidistantes do eixo E,
4- o sentido horário é em relação a um observador fora da aeronave e a olhando de frente.
A figura mostra uma haste de massa desprezível com um apoio articulado em uma extremidade. A outra extremidade possui um recipiente apoiado em uma mola e amarrado ao solo por um fio. A haste é mantida na posição horizontal e a mola comprimida. Uma bola é colocada nesse recipiente e, após o corte do fio, o sistema é liberado com distensão instantânea da mola.
A constante elástica da mola, em N/m, para que, quando a prancha estiver perpendicular ao solo, a bola seja lançada e acerte o cesto é:
Dados:
• comprimento da prancha: 1 m;
• distância do apoio ao cesto: 5 m;
• massa da bola: 200 g;
• deformação inicial da mola: 10 cm; e
• aceleração da gravidade: 10 m/s2
Observação:
• despreze as dimensões da bola.
I. Os intervalos de tempo entre o disparo e a colisão podem ser iguais para ambos os mísseis. II. Para que o míssil 1 acerte o alvo é necessário que o módulo da componente y de sua velocidade seja igual a va. III. Desde o disparo até a colisão, o míssil 2 executa uma trajetória curva de concavidade positiva com relação ao sistema xy.
Considerando V corno verdadeira e F como falsa, as afirmações I, II e III são, respectivamente,
As bicicletas elétricas estão cada vez mais comuns nas cidades brasileiras.
Suponha que uma bicicleta elétrica de massa igual a 30 kg, sendo conduzida por um ciclista de massa igual a 70 kg consiga, partindo do repouso, atingir a velocidade de 72 km/h em 10 s.
Obs.: Considere que:
1 – o ciclista não usou sua força muscular,
2 – a variação da velocidade se deve apenas ao trabalho realizado pelo motor elétrico.
Dentre as alternativas abaixo, qual o menor valor de potência média, em watts, que o motor elétrico dessa bicicleta deve fornecer para que esses valores sejam possíveis?
O avião atinge uma determinada altitude (ponto A) e a partir dela aumenta sua velocidade sob uma aceleração de 2 vezes o módulo da aceleração da gravidade. Próximo de atingir o ponto B, o avião diminui o módulo da força produzida pelo motor até se igualar a resistência do ar e, a partir do ponto B, inicia um lançamento oblíquo até D.
Uma vez que a pessoa não está presa a nenhuma parte do avião e que também realiza um lançamento oblíquo com a mesma velocidade inicial do avião a partir de B, pode-se afirmar corretamente que o módulo da força normal do piso do avião contra a força peso da pessoa no trecho de B a D é ______.
No sistema representado na figura a seguir, tem-se dois corpos A e B, sendo que o corpo A tem massa igual a 10 kg e o sistema está em equilíbrio estático. Esse sistema é composto por cordas ideais (massas desprezíveis e inextensíveis), além disso, na corda 2 tem-se uma tração de intensidade igual a 300 N.
Admitindo a aceleração da gravidade no local igual a 10 m/s2
,
determine, respectivamente, em kg, a massa do corpo B e, em N, o
valor da intensidade da tração na corda 4, que prende o corpo B ao
corpo A.
SALVAMENTO EM ALTURA.
Responda à próxima questão à luz do documento Curso de Capacitação em Salvamento em Altura
/ Corpo de Bombeiros Militar de Santa Catarina. Organizado por Fábio Collodel. -- 1. ed. -- Florianópolis,
2017. 271 p. : il. Color.
Marque a alternativa que completa corretamente a lacuna do texto a seguir:
Força de Choque é a força transmitida ao bombeiro durante a retenção de sua queda. Ao cair, o bombeiro acumula energia cinética que aumentará quanto maior for a altura de sua queda. A corda, as ancoragens, o sistema de freio e o segurança absorverão parte dessa força, porém, a força absorvida pelo bombeiro que sofreu a queda não pode chegar a ______, limite máximo que o corpo humano suporta.
Um professor quer verificar se um objeto maciço e demassa “m” é feito unicamente de uma determinada substância dedensidade do
Para isso, pendurou uma mola, que obedece a Leide Hooke, na vertical por uma das suas extremidades e na outracolocou o objeto. Em seguida, o professor mediu o módulo daforça elástica (F1) que a mola exerce sobre o objeto devido ao alongamento Δx1 (considere que a mola e o objeto estão em equilíbrio estático e no ar, cujo empuxo sobre o objeto e a mola é desprezível). Ainda com a mola e o objeto na vertical, conforme o desenho, o professor mediu o novo módulo da força elástica,agora chamada de F2, que a mola exerce sobre o objeto devido ao alongamento Δx2 , considerando o objeto em equilíbrio estático e totalmente imerso na água (densidade dA).
Considere também que a experiência toda foi realizada em um local onde o módulo da aceleração da gravidade (g) é constante e que o empuxo da águasobre a parte imersa da mola é desprezível.
Para que objeto seja feito unicamente da substância com densidade dO prevista, F2 deve ser
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
A força gera, assim, um torque sobre a alavanca. Considere uma outra força , de menor módulo possível, que pode ser aplicada sozinha no ponto P e causar o mesmo torque gerado pela força . Nessas condições, a opção que melhor apresenta a direção, o sentido e o módulo G da força é
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
O bloco B desliza com atrito sobre a superfície de uma mesa plana e horizontal, e o bloco A desce verticalmente com aceleração constante de módulo a. O bloco C desliza com atrito sobre o bloco B, e o bloco D desce verticalmente com aceleração constante de módulo 2a. As massas dos blocos A, B e D são iguais, e a massa do bloco C é o triplo da massa do bloco A. Nessas condições, o coeficiente de atrito cinético, que é o mesmo para todas as superfícies em contato, pode ser expresso pela razão
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
A partícula 2 é lançada do ponto B com velocidade 0 v e gasta um tempo t para chegar ao ponto C. Considerando que as partículas 1 e 2 colidem no vértice C, então a velocidade de lançamento da partícula 1 vale
Analise a figura abaixo.
A figura acima mostra uma corda, presa em suas duas extremidades a dois blocos de massa m= 20 kg cada um. Uma fonte sonora que oscila numa frequência angular de 60∏ rad/s está em ressonância com o trecho AB da corda, de 50 cm, oscilando, assim, em seu segundo harmônico. Observa-se que, na oscilação do trecho AB da corda, não há movimento dos blocos. Qual a massa, em kg, dessa corda que possui 1,0m de comprimento?
Dado: g=10m/s2
Analise as figuras abaixo.
A figura (2) acima mostra um sistema massa-mola em equilíbrio estático, cuja mola possui constante elástica k e o bloco, massa m, prestes a ser atingido por um projétil, de massa desprezível, que em seguida no bloco se aloja, passando o sistema mola+projétil+bloco a oscilarem MHS com uma frequência angular w. Sendo g a aceleração da gravidade local e sabendo que o ponto mais alto que o bloco+projétil atinge coincide com o zero da mola, conforme a figura (4), qual a velocidade v’ adquirida pelo bloco+projétil imediatamente após a colisão figura (3) e, qual é a amplitude do MHS executado pelo sistema?
Analise a figura abaixo.
A figura acima mostra dois blocos A e B de massas m e 3m, respectivamente, ligados por uma corda inextensível e de massa desprezível passando por uma polia ideal sem atrito e através de um orifício O. No movimento da corda, considere que o orifício atua com uma força de atrito constante, F. Sabendo-se que a aceleração do sistema é g/3, onde g é a aceleração da gravidade, qual o módulo da força de atrito F ?
Um corpo homogêneo de massa 2 kg desliza sobre uma superfície horizontal, sem atrito, com velocidade constante de 8 m/s no sentido indicado no desenho, caracterizando a situação 1.
A partir do ponto A, inicia a subida da rampa, onde existe atrito. O corpo sobe até parar na situação 2, e, nesse instante, a diferença entre as alturas dos centros de gravidade (CG) nas situações 1 e 2 é 2,0 m.
A energia mecânica dissipada pelo atrito durante a subida do corpo na rampa, da situação 1 até a situação 2, é
Dado: adote a aceleração da gravidade g=10 m/s2
No plano inclinado abaixo, um bloco homogêneo encontra-se sob a ação de uma força de intensidade F=4 N, constante e paralela ao plano. O bloco percorre a distância AB, que é igual a 1,6 m, ao longo do plano com velocidade constante.
Desprezando-se o atrito, então a massa do bloco e o trabalho realizado pela força peso quando o bloco se desloca do ponto A para o ponto B são, respectivamente,
Dados: adote a aceleração da gravidade g = 10 m/s2
sen 60° = √3/2 e cos 60° = 1/2