Questões Militares
Sobre eletricidade em física
Foram encontradas 700 questões

A partir do circuito e do gráfico apresentados, assinale a alternativa correta para a potência dissipada internamente na fonte quando esta fornece uma corrente de 2,0 mA.
Michael Faraday foi um cientista inglês que viveu no século XIX. Através de suas descobertas foram estabelecidas as bases do eletromagnetismo, relacionando fenômenos da eletricidade, eletroquímica e magnetismo. Suas invenções permitiram o desenvolvimento do gerador elétrico, e foi graças a seus esforços que a eletricidade tornou-se uma tecnologia de uso prático. Em sua homenagem uma das quatro leis do eletromagnetismo leva seu nome e pode ser expressa como:
ε = ΔΦ/Δt onde ε é a força eletromotriz induzida em um circuito, ∅ é o fluxo magnético através desse circuito e t é o tempo.
Considere a figura ao lado, que representa um ímã próximo a um anel condutor e um observador na posição O. O ímã pode se deslocar ao longo do eixo do anel e a distância entre o polo norte e o centro do anel é d. Tendo em vista essas informações, identifique as seguintes afirmativas como verdadeiras (V) ou falsas (F):
( ) Mantendo-se a distância d constante se observará o surgimento de uma corrente induzida no anel no sentido horário.
( ) Durante a aproximação do ímã à espira, observa-se o surgimento de uma corrente induzida no anel no sentido horário.
( ) Durante o afastamento do ímã em relação à espira, observa-se o surgimento de uma corrente induzida no anel no sentido horário.
( ) Girando-se o anel em torno do eixo z, observa-se o surgimento de uma corrente induzida.
Assinale a alternativa que apresenta a sequência correta, de cima para baixo.
O diagrama a seguir mostra os níveis de energia permitidos para elétrons de um certo elemento químico.
Durante a emissão de radiação por este elemento, são observados três comprimentos de onda: λA, e λB λC .
Sabendo-se que λA < λB < λC , pode-se afirmar que λA / λC é igual a
Desejando-se determinar a intensidade do campo magnético no interior de um solenóide longo percorrido por uma corrente elétrica constante, um professor de física construiu um aparato experimental que consistia, além do solenóide, de uma balança de braços isolantes e iguais a d1 e d2 , sendo que o prato em uma das extremidades foi substituído por uma espira quadrada de lado l, conforme indicado na figura abaixo.
Quando não circula corrente na espira, a balança se
encontra em equilíbrio e o plano da espira está na
horizontal. Ao fazer passar pela espira uma corrente elétrica
constante i, o equilíbrio da balança é restabelecido ao
colocar no prato uma massa m . Sendo g o módulo do
campo gravitacional local, o campo magnético no interior do
solenóide é dado pela expressão
Duas grandes placas metálicas idênticas, P1 e P2, são fixadas na face dianteira de dois carrinhos, de mesma massa, A e B.
Essas duas placas são carregadas eletricamente, constituindo, assim, um capacitor plano de placas paralelas.
Lançam-se, simultaneamente, em sentidos opostos, os carrinhos A e B, conforme indicado na figura abaixo.
Desprezadas quaisquer resistências ao movimento do
sistema e considerando que as placas estão eletricamente
isoladas, o gráfico que melhor representa a ddp, U, no
capacitor, em função do tempo t, contado a partir do
lançamento é
Em um chuveiro elétrico, submetido a uma tensão elétrica constante de 110 V, são dispostas quatro resistências ôhmicas, conforme figura abaixo.
Faz-se passar pelas resistências um fluxo de água, a uma mesma temperatura, com uma vazão constante de 1,32 litros por minuto.
Considere que a água tenha densidade de 1,0 g/cm3 e calor específico de 1,0 cal g/ °C , que 1cal = 4J e que toda energia elétrica fornecida ao chuveiro seja convertida em calor para aquecer, homogeneamente, a água.
Nessas condições, a variação de temperatura da água, em
°C , ao passar pelas resistências é
Uma pequenina esfera vazada, no ar, com carga elétrica igual a 1 µC e massa 10g , é perpassada por um aro semicircular isolante, de extremidades A e B, situado num plano vertical.
Uma partícula carregada eletricamente com carga igual a 4µC é fixada por meio de um suporte isolante, no centro C do aro, que tem raio R igual a 60 cm, conforme ilustra a figura abaixo.
Despreze quaisquer forças dissipativas e considere a aceleração da gravidade constante.
Ao abandonar a esfera, a partir do repouso, na extremidade
A, pode-se afirmar que a intensidade da reação normal, em
newtons, exercida pelo aro sobre ela no ponto mais baixo
(ponto D) de sua trajetória é igual a
Um corpo luminoso de massa 1 kg é acoplado a uma mola ideal de constante elástica N/m 100 e colocado à meia distância entre uma lente esférica delgada convergente L e um espelho esférico côncavo gaussiano E, de distâncias focais respectivamente iguais a 10 cm e 60 cm, como mostra a figura abaixo.
Considere que o corpo luminoso seja puxado verticalmente
para baixo 1 cm a partir da posição em que ele se encontra
em equilíbrio sobre o eixo óptico do sistema e, então,
abandonado, passa a oscilar em movimento harmônico
simples exclusivamente na vertical. A distância entre o
centro de curvatura do espelho e o centro óptico da lente é
40 cm. Dessa forma, o corpo luminoso serve de objeto real
para a lente e para o espelho que conjugam, cada um,
apenas uma única imagem desse objeto luminoso oscilante.
Nessas condições, as funções horárias, no Sistema
Internacional de Unidades (SI), que melhor descrevem os
movimentos das imagens do corpo luminoso, respectivamente,
conjugadas pela lente L e pelo espelho E, são

A resistência equivalente, entre os pontos A e B, vale:

Um capacitor de placas paralelas carregado gera um campo elétrico constante em seu interior. Num instante inicial, uma partícula de massa m e carga +Q, localizada no interior do capacitor, é liberada com velocidade nula. Neste mesmo instante, o capacitor começa a girar com velocidade angular constante ω em torno do eixo z. Enquanto estiver no interior do capacitor e antes de colidir com uma das placas, a trajetória da carga será uma
Observação:
• desconsidere as ações dos campos magnético e gravitacional.

A figura acima apresenta um circuito elétrico e um sistema de balança. O circuito é composto por uma Fonte em U, cinco resistores, um capacitor, um quadrado formado por um fio homogêneo, duas chaves e um eletroímã interligados por fios de resistência desprezível. O sistema de balança é composto por um bloco e um balde de massa desprezível que está sendo preenchido por água através de um dispositivo. Sabe-se que, imediatamente após o carregamento do capacitor, a chave Cha se abrirá e a chave Chb se fechará, fazendo com que o capacitor alimente o eletroímã, de modo que este acione um dispositivo que interromperá o fluxo de água para o balde. O valor do capacitor para que o sistema balde e bloco fique em equilíbrio e a energia dissipada no fio a partir do momento em que o capacitor esteja completamente carregado até o vigésimo segundo são, respectivamente
Dados:
• U = 100 V;
• resistência total do fio: 32 kΩ
• fluxo de água: 200 ml/s;
• massa específica da água = 1 g/cm3 ;
• massa do bloco: 0,8 kg.
Observações:
• despreze a massa do balde;
• considere o capacitor carregado em um tempo correspondente a cinco vezes a constante de tempo.

A figura acima apresenta um pêndulo simples constituído por um corpo de massa 4 g e carga + 50 µC e um fio inextensível de 1 m. Esse sistema se encontra sob a ação de um campo elétrico

Considerando que o pêndulo oscile com amplitude pequena e que o campo gravitacional seja desprezível, o período de oscilação, em segundos, é

A figura acima mostra um circuito elétrico composto por resistências e fontes de tensão. Diante do exposto, a potência dissipada, em W, no resistor de 10 Ω do circuito é

Corrente elétrica Dano biológico
De 0,01 A ate 0,02 A Dor e contração muscular
De 0,02 A ate 0,1 A Parada respiratória
De 0,1 A ate 3 A Fibrilação ventricular que pode ser fatal Acima de 3 A Parada cardíaca e queimaduras graves www.mundoeducacao.com/fisica/os-efeitos-corrente-e...
A tabela acima apresenta valores de corrente elétrica e as consequências para a saúde dos seres humanos. Para medir a corrente elétrica a que uma pessoa fica submetida deve-se dividir a diferença de potencial (ddp) em volts (V) pela resistência elétrica em Ohms (Q). Desta forma, assinale a opção que indica a consequência para uma pessoa que tenha uma resistência elétrica de 2000 Q e fica submetida a uma ddp de 100 V de uma rede elétrica.
( ) Oersted descobriu que uma corrente elétrica em um fio produz um campo magnético ao redor do fio que altera o sentido do ponteiro da bússola.
( ) Ampére descobriu que a atração ou repulsão entre dois fios percorridos por correntes elétricas deve-se unicamente ao campo elétrico gerado pelos fios.
( ) Ao enrolar um fio ao redor de uma chave de fenda e ligar os fios a uma pilha ou bateria, a chave de fenda torna-se um eletronima e passa a atrair determinados objetos metálicos.
( ) O funcionamento dos motores elétricos como, por exemplo, o do ventilador e baseado nos eletroimas, ou seja, um grande ima em movimento que gera corrente elétrica.