Questões Militares
Sobre leis de kepler em física
Foram encontradas 20 questões
Disponível em: https://www.ufsm.br/cursos/graduacao/santa-maria/fisica/2020/02/20/principios-e-leis/. Acesso em: 13 de outubro de 2022. (Adaptado).
Tendo esse contexto em vista, considere a afirmativa a seguir:
“O quadrado do período de translação de cada planeta em torno do Sol é proporcional ao cubo do raio médio da respectiva órbita.”
Nesse sentido, é CORRETO afirmar que essa afirmativa se refere:
Os raios das trajetórias dos satélites são definidos como sendo a distância entre o centro do planeta e o respectivo centro de massa do satélite.
Assinale, entre as alternativas, aquela que indica corretamente o satélite com a maior velocidade tangencial.
Observação: o valor do raio médio da órbita de Mercúrio em torno do Sol é 40% do valor do raio médio da órbita da Terra em torno do Sol.
π = 3,14;
Aceleração da gravidade =10 m/s2.
Pressão atmosférica no nível do mar = 1,01 x 105 Pa
1 cal = 4,2 J.
Calor específico da água = 1 cal/g.K.
Calor específico do gelo = 0,5 cal/g.K.
Calor latente de fusão do gelo = 80 cal/g.
Constante dos gases ideais = 8,31 J/mol.K.
Constante de Coulomb = 9,0 x 109 N m2/C2.
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Considere um segmento de reta que liga o centro de qualquer planeta do sistema solar ao centro do Sol. De acordo com a 2ª Lei de Kepler, tal segmento percorre áreas iguais em tempos iguais. Considere, então, que em dado instante deixasse de existir o efeito da gravitação entre o Sol e o planeta.
Assinale a alternativa correta.
I. O período de revolução é o mesmo para as duas estrelas. II. Esse período é função apenas da constante gravitacional, da massa total do sistema e da distância entre ambas as estrelas. III. Sendo R1 e R2 os vetores posição que unem o centro de massa dos sistema aos respectivos centros de massa das estrelas, tanto R1 como R2 varrem áreas de mesma magnitude num mesmo intervalo de tempo.
Assinale a alternativa correta.
I. O período de revolução e o mesmo para as duas estrelas e depende apenas da distância entre elas, da massa total deste binário e da constante gravitacional.
II. Considere que R1 e R2 são os valores que ligam CM ao respectivo centro de cada estrela num certo intervalo de tempo Δt o raio vetor R1 varre uma certa área A. Durante este mesmo intervalo de tempo, o raio vetor R2 também varre uma área igual a A.
Diante destas duas proposições, assinale a alternativa correta.
Na cidade de Macapá, no Amapá, Fernando envia uma mensagem via satélite para Maria na mesma cidade.
A mensagem é intermediada por um satélite geoestacionário, em órbita circular cujo centro coincide com o centro geométrico da Terra, e por uma operadora local de telecomunicação da seguinte forma: o sinal de informação parte do celular de Fernando direto para o satélite que instantaneamente retransmite para a operadora, que, da mesma forma, transmite para o satélite mais uma vez e, por fim, é retransmitido para o celular de Maria.
Considere que esse sinal percorra todo trajeto em linha reta e na velocidade da luz, c; que as dimensões da cidade sejam desprezíveis em relação à distância que separa o satélite da Terra, que este satélite esteja alinhado perpendicularmente à cidade que se encontra ao nível do mar e na linha do equador. Sendo, M, massa da Terra, T, período de rotação da Terra, RT , raio da Terra e G, a constante de gravitação universal, o intervalo de tempo entre a emissão do sinal no celular de Fernando e a recepção no celular de Maria, em função de c, M, T, G e RT é
As leis da física teórica e universal foram estabelecidas por Kepler, no século XVII.