Questões Militares Sobre física
Foram encontradas 3.904 questões
Observe a figura abaixo.
O esquema acima representa, de modo simplificado, a ligação de um chuveiro elétrico em uma rede de
alimentação elétrica doméstica.
Supondo que a chave reguladora de temperatura esteja na
posição 2 e usando as informações mostradas, pode-se
afirmar que a corrente elétrica que passa pelo disjuntor
vale
As figuras abaixo mostram as condições iniciais e finais de um processo de eletrização feito com dois corpos.
Com base nas condições acima, analise as afirmativas abaixo.
I - A eletrização foi feita por indução.
II - A eletrização foi feita por atrito.
III - A eletrização foi feita por contato.
IV - O bastão de vidro ganhou prótons.
V - A lã ganhou elétrons.
Assinale a opção correta.
Um corpo esférico desce uma rampa, a partir do repouso, conforme mostra a figura abaixo.
Desprezando-se todos os atritos, pode-se afirmar que,
durante a descida desse corpo, a
Observe a figura abaixo.
Um trabalhador empurra um carrinho de 20 kg de massa.
Nesse carrinho existem duas caixas, conforme a figura
acima. Considerando que, nessa tarefa, a aceleração
produzida no carrinho foi constante e igual a 1,2 m/s2,
pode-se afirmar que a força exercida pelo trabalhador foi
de
Observe a figura abaixo.
Um estudante, ao realizar um experimento, construiu, com uma lata de leite, uma câmara escura de orifício. Para isso, ele fez um furo no centro do fundo da lata e, em seguida, retirou a tampa do outro lado, colando um disco de papel vegetal nessa tampa.
Ao colocar uma lâmpada acesa distante 60 cm de sua câmara escura de orifício, o estudante viu a projeção da imagem da lâmpada sobre o papel vegetal, conforme mostra a figura acima.
Observando as medidas obtidas no experimento, é correto
afirmar que o tamanho da lâmpada utilizada é de
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
A Figura 1 mostra uma espira quadrada, feita de material condutor, contida num plano zy, e um fio condutor retilíneo e muito longo, paralelo ao eixo z, sendo percorrido por uma corrente elétrica de intensidade i, dada pelo gráfico da Figura 2.
A partir da análise das Figuras 1 e 2, pode-se afirmar que o
gráfico que melhor representa a fem induzida ε entre os
pontos A e B é
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
A Figura 1 abaixo representa um arranjo experimental para a obtenção do espectro de emissão da luz emitida por uma lâmpada de gás de hidrogênio.
Ao passar pelo prisma, a luz divide-se em quatro feixes de cores distintas: violeta, anil, azul e vermelho. Projetando-se esses feixes em um anteparo, eles ficam espalhados, como ilustrado na Figura 1.
Considere, agora, a Figura 2, que ilustra esquematicamente alguns níveis de energia do átomo de hidrogênio, onde as setas I, II, III e IV mostram transições possíveis para esse átomo.
Relacionando as informações contidas na Figura 2 com as
cores da luz emitida pela lâmpada de gás de hidrogênio
mostrada na Figura 1, é correto afirmar que a cor anil
corresponde à transição
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Dois longos fios paralelos estão dispostos a uma distância l um do outro e transportam correntes elétricas de mesma intensidade i em sentidos opostos, como ilustra a figura abaixo.
Nessa figura o ponto P é equidistante dos fios. Assim, o
gráfico que melhor representa a intensidade do campo
magnético resultante B, no ponto P, em função da abscissa x, é
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
A figura a seguir representa um circuito elétrico constituído por duas baterias de resistências internas desprezíveis e sete resistores ôhmicos.
Sendo que a máxima potência dissipada em cada resistor
não poderá ultrapassar 10 W, a fem ε máxima que as
baterias poderão apresentar é, em V,
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Um sistema é composto por quatro cargas elétricas puntiformes fixadas nos vértices de um quadrado, conforme ilustrado na figura abaixo.
As cargas q1 e q2 são desconhecidas. No centro Ο do
quadrado o vetor campo elétrico , devido às quatro
cargas, tem a direção e o sentido indicados na figura.
A partir da análise deste campo elétrico, pode-se afirmar que o potencial elétrico em Ο
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Uma pequena esfera C, com carga elétrica de +5 ⋅10-4C , é guiada por um aro isolante e semicircular de raio R igual a 2,5 m, situado num plano horizontal, com extremidades A e B, como indica a figura abaixo.
A esfera pode se deslocar sem atrito tendo o aro como
guia. Nas extremidades A e B deste aro são fixadas duas
cargas elétricas puntiformes de +8 ⋅10−6C e +1 ⋅10−6C,
respectivamente. Sendo a constante eletrostática do meio
igual a , na posição de equilíbrio da esfera C, a reação normal do aro sobre a esfera, em N, tem
módulo igual a
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Considere uma lente esférica delgada, S, de bordas finas, feita de material de índice de refração n maior do que o índice de refração do ar. Com esta lente podem-se realizar dois experimentos. No primeiro, a lente é imersa em um meio ideal, de índice de refração n1 , e o seu comportamento óptico, quando um feixe de luz paralela passa por ela, é o mesmo de uma lente côncavo-convexa de índice de refração n imersa no ar. No segundo, a lente S é imersa em um outro meio ideal, de índice de refração n2 , e o seu comportamento óptico é o mesmo de uma lente convexo-côncava de índice de refração n imersa no ar.
Nessas condições, são feitas as seguintes afirmativas:
I. n2 > n > n1.
II. a lente S, quando imersa no ar, pode ser uma lente plano-côncava.
III. a razão entre as vergências da lente S nos dois experimentos não pode ser 1.
IV. as distâncias focais da lente S, nos dois experimentos, são sempre as mesmas.
São corretas, apenas
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Duas fontes sonoras 1 e 2, de massas desprezíveis, que emitem sons, respectivamente, de frequências f1 = 570 Hz e f2 = 390 Hz são colocadas em um sistema, em repouso, constituído por dois blocos, A e B, unidos por um fio ideal e inextensível, de tal forma que uma mola ideal se encontra comprimida entre eles, como mostra a figura abaixo.
A fonte sonora 1 está acoplada ao bloco A, de massa 2m, e a fonte sonora 2 ao bloco B, de massa m.
Um observador O, estacionário em relação ao solo, dispara um mecanismo que rompe o fio. Os blocos passam, então, a se mover, separados da mola, com velocidades constantes em relação ao solo, sendo que a velocidade do bloco B é de 80 m/s.
Considere que não existam forças dissipativas, que a
velocidade do som no local é constante e igual a 340 m/s,
que o ar se encontra em repouso em relação ao solo.
Nessas condições, a razão entre as frequências sonoras
percebidas pelo observador, devido ao movimento das
fontes 2 e 1, respectivamente, é
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Uma partícula de massa m pode ser colocada a oscilar em quatro experimentos diferentes, como mostra a Figura 1 abaixo.
Para apenas duas dessas situações, tem-se o registro do gráfico senoidal da posição da partícula em função do tempo, apresentado na Figura 2.
Considere que não existam forças dissipativas nos quatro experimentos; que, nos experimentos II e IV , as molas sejam ideais e que as massas oscilem em trajetórias perfeitamente retilíneas; que no experimento III o fio conectado à massa seja ideal e inextensível; e que nos experimentos I e III a massa descreva uma trajetória que é um arco de circunferência.
Nessas condições, os experimentos em que a partícula oscila certamente em movimento harmônico simples são, apenas
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Um sistema termodinâmico constituído de n mols de um gás perfeito monoatômico desenvolve uma transformação cíclica ABCDA representada no diagrama a seguir.
De acordo com o apresentado pode-se afirmar que
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Em um laboratório de física é proposta uma experiência onde os alunos deverão construir um termômetro, o qual deverá ser constituído de um bulbo, um tubo muito fino e uniforme, ambos de vidro, além de álcool colorido, conforme a figura abaixo.
O bulbo tem capacidade de 2,0 cm³, o tubo tem área de secção transversal de 1,0⋅10-2 cm² e comprimento de 25 cm.
No momento da experiência, a temperatura no laboratório é
30 °C, e o bulbo é totalmente preenchido com álcool até a
base do tubo. Sabendo-se que o coeficiente de dilatação do
álcool é 11⋅10-4 °C-1 e que o coeficiente de dilatação do
vidro utilizado é desprezível comparado ao do álcool, a
altura h, em cm, atingida pelo líquido no tubo, quando o
termômetro for utilizado em um experimento a 80 °C, é
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Em feiras livres ainda é comum encontrar balanças mecânicas, cujo funcionamento é baseado no equilíbrio de corpos extensos. Na figura a seguir tem-se a representação de uma dessas balanças, constituída basicamente de uma régua metálica homogênea de massa desprezível, um ponto de apoio, um prato fixo em uma extremidade da régua e um cursor que pode se movimentar desde o ponto de apoio até a outra extremidade da régua. A distância do centro do prato ao ponto de apoio é de 10 cm. O cursor tem massa igual a 0,5 kg. Quando o prato está vazio, a régua fica em equilíbrio na horizontal com o cursor a 4 cm do apoio.
Colocando 1 kg sobre o prato, a régua ficará em equilíbrio
na horizontal se o cursor estiver a uma distância do apoio,
em cm, igual a
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Um bloco escorrega, livre de resistência do ar, sobre um plano inclinado de 30°, conforme a figura (sem escala) a seguir.
No trecho AB não existe atrito e no trecho BC o coeficiente de atrito vale µ = √3/2.
O bloco é abandonado, do repouso em relação ao plano
inclinado, no ponto A e chega ao ponto C com velocidade
nula. A altura do ponto A, em relação ao ponto B, é h1
, e a
altura do ponto B, em relação ao ponto C, é h2
.
A razão vale
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Na situação da figura a seguir, os blocos A e B têm massas mA = 3,0 kg e mB = 1,0 kg . O atrito entre o bloco A e o plano horizontal de apoio é desprezível, e o coeficiente de atrito estático entre B e A vale µe = 0,4. O bloco A está preso numa mola ideal, inicialmente não deformada, de constante elástica K = 160 N/m que, por sua vez, está presa ao suporte S.
O conjunto formado pelos dois blocos pode ser
movimentado produzindo uma deformação na mola e,
quando solto, a mola produzirá uma certa aceleração nesse
conjunto. Desconsiderando a resistência do ar, para que B
não escorregue sobre A, a deformação máxima que a mola
pode experimentar, em cm, vale