Questões de Concurso Militar AFA 2019 para Aspirante da Aeronáutica (Intendente)
Foram encontradas 14 questões
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m3
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um pequeno tubo de ensaio, de massa 50 g, no formato de cilindro, é usado como ludião – uma espécie de submarino miniatura, que sobe e desce, verticalmente, dentro de uma garrafa cheia de água. A figura 1, a seguir, ilustra uma montagem, onde o tubo, preenchido parcialmente de água, é mergulhado numa garrafa pet, completamente cheia de água. O tubo fica com sua extremidade aberta voltada para baixo e uma bolha de ar, de massa desprezível, é aprisionada dentro do tubo, formando com ele o sistema chamado ludião. A garrafa é hermeticamente fechada e o ludião tem sua extremidade superior fechada e encostada na tampa da garrafa.
Uma pessoa, ao aplicar, com a mão, uma pressão constante sobre a garrafa faz com que entre um pouco mais de água no ludião, comprimindo a bolha de ar. Nessa condição, o ludião desce, conforme figura 2, a partir do repouso, com aceleração constante, percorrendo 60 cm, até chegar ao fundo da garrafa, em 1,0 s. Após chegar ao fundo, estando o ludião em repouso, a pessoa deixa de pressionar a garrafa. A bolha expande e o ludião sobe, conforme figura 3, percorrendo os 60 cm em 0,5 s.
Despreze o atrito viscoso sobre o ludião e considere que, ao longo da descida e da subida, o volume da bolha permaneça constante e igual a V0 e V, respectivamente.
Nessas condições, a variação de volume, ∆V = V − V0
, em
cm3
, é igual a
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m3
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere duas fontes pontuais F1 e F2 produzindo perturbações, de mesma frequência e amplitude, na superfície de um líquido homogêneo e ideal. A configuração de interferência gerada por essas fontes é apresentada na figura abaixo.
Sabe-se que a linha de interferência (C) que passa pela metade da distância de dois metros que separa as duas fontes é uma linha nodal. O ponto P encontra-se a uma distância d1 da fonte F1 e d2, da fonte F2, e localiza-se na primeira linha nodal após a linha central.
Considere que a onda estacionária que se forma entre as fontes possua cinco nós e que dois destes estejam posicionados sobre as fontes.
Nessas condições, o produto (d1⋅ d2) entre as distâncias
que separam as fontes do ponto P é
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m3
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um telescópio refrator é construído com uma objetiva acromática formada pela justaposição de duas lentes esféricas delgadas, uma convexo-côncava, de índice de refração n1 e raios de curvatura R e 2R; e a outra biconvexa de índice de refração n2 e raio de curvatura R.
Já a ocular é uma lente esférica delgada simples com uma distância focal que permite um aumento máximo para o telescópio igual, em módulo, a 5.
Observando-se através desse telescópio um objeto muito distante, uma imagem final imprópria é conjugada por esse instrumento.
Considere que o telescópio seja utilizado em condições usuais nas quais é mínima a distância L entre as lentes objetiva e ocular, que o local onde a observação é realizada tenha índice de refração constante e igual a 1; e que sejam desprezadas as características do sistema óptico do observador.
Nessas condições, o comprimento mínimo L desse telescópio será dado por
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m3
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Uma carga positiva Q distribui-se uniformemente ao longo de um anel fixo não-condutor de centro C.
No ponto P, sobre o eixo do anel, abandona-se em repouso uma partícula com carga elétrica q, conforme ilustrado na figura abaixo.
Sabe-se que depois de um certo tempo essa partícula
passa pelo centro C do anel. Considerando apenas as
interações elétricas entre as cargas Q e q, pode-se afirmar
que
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m3
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Uma partícula de massa 1 g eletrizada com carga igual a − 4 mC encontra-se inicialmente em repouso imersa num campo elétrico vertical e num campo magnético horizontal, ambos uniformes e constantes. As intensidades de e são, respectivamente, 2 V/m e 1 T.
Devido exclusivamente à ação das forças elétrica e magnética, a partícula descreverá um movimento que resulta numa trajetória cicloidal no plano xz, conforme ilustrado na figura abaixo.
Sabendo-se que a projeção deste movimento da partícula
na direção do eixo oz resulta num movimento harmônico
simples, pode-se concluir que a altura máxima H atingida
pela partícula vale, em cm,
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m3
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere que a intensidade do campo magnético gerado por um ímã em forma de barra varia na razão inversa do quadrado da distância d entre o centro C deste ímã e o centro de uma espira condutora E, ligada a uma lâmpada L, conforme ilustrado na figura abaixo.
A partir do instante t0 = 0, o ímã é movimentado para a direita e para a esquerda de tal maneira que o seu centro C passa a descrever um movimento harmônico simples indicado abaixo pelo gráfico da posição (x) em função do tempo (t).
Durante o movimento desse ímã, verifica-se que a
luminosidade da lâmpada L
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
A partícula 2 é lançada do ponto B com velocidade 0 v e gasta um tempo t para chegar ao ponto C. Considerando que as partículas 1 e 2 colidem no vértice C, então a velocidade de lançamento da partícula 1 vale
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
O bloco B desliza com atrito sobre a superfície de uma mesa plana e horizontal, e o bloco A desce verticalmente com aceleração constante de módulo a. O bloco C desliza com atrito sobre o bloco B, e o bloco D desce verticalmente com aceleração constante de módulo 2a. As massas dos blocos A, B e D são iguais, e a massa do bloco C é o triplo da massa do bloco A. Nessas condições, o coeficiente de atrito cinético, que é o mesmo para todas as superfícies em contato, pode ser expresso pela razão
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
Certo brinquedo de um parque aquático é esquematizado
pela figura a seguir, onde um homem e uma boia, sobre a
qual se assenta, formam um sistema, tratado como
partícula.
Essa “partícula” inicia seu movimento do repouso, no ponto A, situado a uma altura H = 15 m, escorregando ao longo do toboágua que está inclinado de 60º em relação ao solo, plano e horizontal. Considere a aceleração da gravidade constante e igual a g e despreze as resistências do ar, do toboágua e os efeitos hidrodinâmicos sobre a partícula. Para freá-la, fazendo-a chegar ao ponto C com velocidade nula, um elástico inicialmente não deformado, que se comporta como uma mola ideal, foi acoplado ligando essa partícula ao topo do toboágua.
Nessa circunstância, a deformação máxima sofrida pelo elástico foi de m
Na descida, ao passar pelo ponto B, que se encontra a uma
altura
, a partícula atinge sua velocidade máxima, que,
em m/s, vale
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
A força gera, assim, um torque sobre a alavanca. Considere uma outra força , de menor módulo possível, que pode ser aplicada sozinha no ponto P e causar o mesmo torque gerado pela força . Nessas condições, a opção que melhor apresenta a direção, o sentido e o módulo G da força é
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
Considere uma máquina térmica ideal M que funciona realizando o ciclo de Carnot, como mostra a figura abaixo.
Essa máquina retira uma quantidade de calor Q de um reservatório térmico à temperatura constante T, realiza um trabalho total τ e rejeita um calor Q2 para a fonte fria à temperatura , também constante.
A partir das mesmas fontes quente e fria projeta-se quatro
máquinas térmicas A, B, C e D, respectivamente, de acordo
com as figuras 1, 2, 3 e 4 abaixo; para que realizem, cada
uma, o mesmo trabalho τ da máquina M.
Nessas condições, as máquinas térmicas que poderiam ser
construídas, a partir dos projetos apresentados, seriam
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
A figura 2 mostra o circuito elétrico simplificado de um automóvel, composto por uma bateria ideal de fem ε igual a 12 V, duas lâmpadas LF, cujas resistências elétricas são ôhmicas e iguais a 6 Ω cada. Completam o circuito outras duas lâmpadas LM , também ôhmicas, de resistências M elétricas 3 Ω cada, além do fusível F e da chave Ch, inicialmente aberta.
A partir do instante em que a chave Ch for fechada, observar-se-á que as duas lâmpadas LF
Nas questões de Física, quando necessário, use:
• densidade da água: d = 1⋅103 kg/m³
• aceleração da gravidade: g = 10 m/s²
• cos 30º = sen 60º =
• cos 60º = sen 30º =
• cos 45º = sen 45º =
Fecha-se a chave Ch e aguarda-se o capacitor carregar. Quando ele estiver completamente carregado, pode-se afirmar que a razão entre a energia dissipada no resistor (ER) e a energia acumulada no capacitor (EC) ,