Questões Militares
Comentadas para afa
Foram encontradas 410 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Leave Out All The Rest (Linking Park)
Soundtrack of Twilight
I dreamed I was missing
You were so scared
But no one would listen
‘Cause no one else cared
After my dreaming
I woke with this fear
What am I leaving
When I’m done here
[...]
(Chorus)
When my time comes
Forget the wrong that I’ve done
Help me leave behind some
Reasons to be missed
[...]
Don’t be afraid
I’ve taken my beating
I’ve shared what
I made
[...]
Pretending
Someone else can come and save me from myself
I can’t be who you are
Read the chorus of the song and choose the correct alternative.
The singer _____ _____ the wrong _____.
Twilight
Twilight is a 2008 American romantic vampire film based ___ Stephenie Meyer’s popular novel of the same name. It is the first film in The Twilight Saga film series. This film focuses on the development of the relationship between Bella Swan and Edward Cullen (a vampire), and the subsequent efforts of Cullen and his family to keep Swan safe ___ a coven of evil vampires.
The project was in development for approximately 3 years ___ Paramount Pictures, during which time a screen adaptation that differed significantly from the novel was written. Principal photography took 44 days and the film was primarily shot in Oregon.
Twilight was theatrically released ___ November 21 2010, grossing over US$392 million worldwide and became the most purchased DVD of the year. The soundtrack was released in the same year. Following the success of the film, New Moon and Eclipse, the next two novels in the series, were produced as films the following year.
Adapted from Wikipedia
Twilight
Twilight is a 2008 American romantic vampire film based ___ Stephenie Meyer’s popular novel of the same name. It is the first film in The Twilight Saga film series. This film focuses on the development of the relationship between Bella Swan and Edward Cullen (a vampire), and the subsequent efforts of Cullen and his family to keep Swan safe ___ a coven of evil vampires.
The project was in development for approximately 3 years ___ Paramount Pictures, during which time a screen adaptation that differed significantly from the novel was written. Principal photography took 44 days and the film was primarily shot in Oregon.
Twilight was theatrically released ___ November 21 2010, grossing over US$392 million worldwide and became the most purchased DVD of the year. The soundtrack was released in the same year. Following the success of the film, New Moon and Eclipse, the next two novels in the series, were produced as films the following year.
Adapted from Wikipedia
Twilight
Twilight is a 2008 American romantic vampire film based ___ Stephenie Meyer’s popular novel of the same name. It is the first film in The Twilight Saga film series. This film focuses on the development of the relationship between Bella Swan and Edward Cullen (a vampire), and the subsequent efforts of Cullen and his family to keep Swan safe ___ a coven of evil vampires.
The project was in development for approximately 3 years ___ Paramount Pictures, during which time a screen adaptation that differed significantly from the novel was written. Principal photography took 44 days and the film was primarily shot in Oregon.
Twilight was theatrically released ___ November 21 2010, grossing over US$392 million worldwide and became the most purchased DVD of the year. The soundtrack was released in the same year. Following the success of the film, New Moon and Eclipse, the next two novels in the series, were produced as films the following year.
Adapted from Wikipedia
Considere uma aplicação financeira denominada UNI que rende juros mensais de M = log27 196 e outra aplicação financeira denominada DUNI que rende juros mensais de
A razão entre os juros mensais M e N, nessa ordem, é
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
O diagrama abaixo ilustra os níveis de energia ocupados por elétrons de um elemento químico A.
Dentro das possibilidades apresentadas nas alternativas
abaixo, a energia que poderia restar a um elétron com
energia de 12,0 eV, após colidir com um átomo de A, seria
de, em eV,
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Numa região onde atua um campo magnético uniforme vertical, fixam-se dois trilhos retos e homogêneos, na horizontal, de tal forma que suas extremidades ficam unidas formando entre si um ângulo θ .
Uma barra condutora AB, de resistência elétrica desprezível, em contato com os trilhos, forma um triângulo isósceles com eles e se move para a direita com velocidade constante , a partir do vértice C no instante t0 = 0, conforme ilustra a figura abaixo.
Sabendo-se que a resistividade do material dos trilhos não
varia com a temperatura, o gráfico que melhor representa a
intensidade da corrente elétrica i que se estabelece neste
circuito, entre os instantes t1 e t2, é
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
O lado EF de uma espira condutora quadrada indeformável, de massa m, é preso a uma mola ideal e não condutora, de constante elástica K. Na posição de equilíbrio, o plano da espira fica paralelo ao campo magnético gerado por um ímã em forma de U, conforme ilustra a figura abaixo.
O lado CD é pivotado e pode girar livremente em torno do suporte S, que é posicionado paralelamente às linhas de indução do campo magnético.
Considere que a espira é percorrida por uma corrente elétrica i, cuja intensidade varia senoidalmente, em função do tempo t, conforme indicado no gráfico abaixo.
Nessas condições, pode-se afirmar que a
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Um cilindro adiabático vertical foi dividido em duas partes por um êmbolo de 6,0 kg de massa que pode deslizar sem atrito. Na parte superior, fez-se vácuo e na inferior foram colocados 2 mols de um gás ideal monoatômico. Um resistor de resistência elétrica ôhmica R igual a 1 Ω é colocado no interior do gás e ligado a um gerador elétrico que fornece uma corrente elétrica i, constante, de 400 mA, conforme ilustrado na figura abaixo.
Fechando-se a chave Ch durante 12,5 min, o êmbolo
desloca-se 80 cm numa expansão isobárica de um estado de
equilíbrio para outro. Nessas condições, a variação da
temperatura do gás foi, em °C, de
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Uma partícula de massa m e carga elétrica −q é lançada com um ângulo θ em relação ao eixo x, com velocidade igual a , numa região onde atuam um campo elétrico e um campo gravitacional , ambos uniformes e constantes, conforme indicado na figura abaixo.
Desprezando interações de quaisquer outras naturezas com
essa partícula, o gráfico que melhor representa a variação
de sua energia potencial (∆Ep)em função da distância ( d )
percorrida na direção do eixo x, é
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
A figura abaixo mostra uma pequena esfera vazada E, com carga elétrica 5 q = +2,0 ⋅ 10-5C e massa 80 g, perpassada por um eixo retilíneo situado num plano horizontal e distante D = 3 m de uma carga puntiforme fixa Q = − 3,0 ⋅ 10-6 C.
Se a esfera for abandonada, em repouso, no ponto A, a uma
distância x, muito próxima da posição de equilíbrio O, tal
que, x/D << 1 a esfera passará a oscilar de MHS, em torno
de O, cuja pulsação é, em rad/s, igual a
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Considere um objeto formado por uma combinação de um quadrado de aresta a cujos vértices são centros geométricos de círculos e quadrados menores, como mostra a figura abaixo.
Colocando-se um espelho plano, espelhado em ambos os
lados, de dimensões infinitas e de espessura desprezível ao
longo da reta r, os observadores colocados nas posições 1 e
2 veriam, respectivamente, objetos completos com as
seguintes formas
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Uma figura de difração é obtida em um experimento de difração por fenda simples quando luz monocromática de comprimento de onda λ1 passa por uma fenda de largura d1 . O gráfico da intensidade luminosa I em função da posição x ao longo do anteparo onde essa figura de difração é projetada, está apresentado na figura 1 abaixo.
Alterando-se neste experimento apenas o comprimento de onda da luz monocromática para um valor λ2 , obtém-se o gráfico apresentado na figura 2. E alterando-se apenas o valor da largura da fenda para um valor d2 , obtém-se o gráfico da figura 3.
Nessas condições, é correto afirmar que
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Três pêndulos simples 1, 2 e 3 que oscilam em MHS possuem massas respectivamente iguais a m, 2m e 3m são mostrados na figura abaixo.
Os fios que sustentam as massas são ideais, inextensíveis e possuem comprimento respectivamente L1, L2 e L3 .
Para cada um dos pêndulos registrou-se a posição (x), em metro, em função do tempo (t), em segundo, e os gráficos desses registros são apresentados nas figuras 1, 2 e 3 abaixo.
Considerando a inexistência de atritos e que a aceleração
da gravidade seja g = π2 m / s2 , é correto afirmar que
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Considere a Terra um Planeta esférico, homogêneo, de raio R, massa M concentrada no seu centro de massa e que gira em torno do seu eixo E com velocidade angular constante ω , isolada do resto do universo.
Um corpo de prova colocado sobre a superfície da Terra, em um ponto de latitude φ , descreverá uma trajetória circular de raio r e centro sobre o eixo E da Terra, conforme a figura abaixo. Nessas condições, o corpo de prova ficará sujeito a uma força de atração gravitacional , que admite duas componentes, uma centrípeta, , e outra que traduz o peso aparente do corpo, .
Quando = 0° , então o corpo de prova está sobre a linha do equador e experimenta um valor aparente da aceleração da gravidade igual a ge . Por outro lado, quando = 90° , o corpo de prova se encontra em um dos Polos, experimentando um valor aparente da aceleração da gravidade igual a gp .
Sendo G a constante de gravitação universal, a razão
vale
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Um balão, cheio de um certo gás, que tem volume de 2,0 m3 , é mantido em repouso a uma determinada altura de uma superfície horizontal, conforme a figura abaixo.
Sabendo-se que a massa total do balão (incluindo o gás) é
de 1,6 kg, considerando o ar como uma camada uniforme
de densidade igual a 1,3 kg/m3
, pode-se afirmar que ao
liberar o balão, ele
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Dois mecanismos que giram com velocidades angulares ω1 e ω2 constantes são usados para lançar horizontalmente duas partículas de massas m1= 1kg e m2 = 2kg de uma altura h = 30m , como mostra a figura 1 abaixo.
Num dado momento em que as partículas passam, simultaneamente, tangenciando o plano horizontal α , elas são desacopladas dos mecanismos de giro e, lançadas horizontalmente, seguem as trajetórias 1 e 2 (figura 1) até se encontrarem no ponto P.
Os gráficos das energias cinéticas, em joule, das partículas 1 e 2 durante os movimentos de queda, até a colisão, são apresentados na figura 2 em função de ( h − y ) , em m, onde y é a altura vertical das partículas num tempo qualquer, medida a partir do solo perfeitamente horizontal.
Desprezando qualquer forma de atrito, a razão é
Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
densidade da água: d = 1,0 kg/L
calor específico da água: c = 1 cal/g °C
1 cal = 4 J
constante eletrostática: k = 9,0.109 N.m2 /C2
constante universal dos gases perfeitos: R = 8 J/mol.K
Um bloco é lançado com velocidade vo no ponto P paralelamente a uma rampa, conforme a figura. Ao escorregar sobre a rampa, esse bloco para na metade dela, devido à ação do atrito.
Tratando o bloco como partícula e considerando o
coeficiente de atrito entre a superfície do bloco e da rampa,
constante ao longo de toda descida, a velocidade de
lançamento para que este bloco pudesse chegar ao final da
rampa deveria ser, no mínimo,