Questões Militares Para vestibular

Foram encontradas 320 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q1901433 Física
Se necessitar, use os seguintes valores para as constantes:

Aceleração local da gravidade g = 10 m/s2. 1 UA = dTerra−Sol = 150 milhões de quilômetros.
Velocidade da luz no vácuo c = 3,0×108 m/s. 
Um fluido de densidade ρ, incompressível e homogêneo, move-se por um tubo horizontal com duas secções transversais de áreas A1 e A2 = kA1, em que k é uma constante real positiva menor que 1. Um elemento de volume de fluido entra no tubo com velocidade v1 na região onde a secção transversal de área é A1 e sai através da outra extremidade. O estreitamento do tubo acontece em um curto intervalo de comprimento, muito menor do que o seu comprimento total. Assinale a alternativa que contém a diferença de pressão do fluido entre os pontos de entrada e saída do tubo. 
Alternativas
Q1901432 Física
Se necessitar, use os seguintes valores para as constantes:

Aceleração local da gravidade g = 10 m/s2. 1 UA = dTerra−Sol = 150 milhões de quilômetros.
Velocidade da luz no vácuo c = 3,0×108 m/s. 
Em seu experimento para medir a constante gravitacional G, Henry Cavendish utilizou uma balança de torção composta por uma haste leve e longa, de comprimento L, com duas massas m em suas extremidades, suspensa por um fio fixado ao seu centro. Dois objetos de massa M foram aproximados às extremidades da haste, conforme mostra a figura abaixo, de tal forma que a haste sofreu um pequeno ângulo de deflexão ∆φ a partir da posição inicial de repouso, e foi medida a distância b entre os centros das massas m e M mais próximos. Quando torcido de um ˆângulo φ, o fio gera um torque restaurador τ = −κφ. Determine a expressão aproximada de G, em termos dos parâmetros do sistema. 
Imagem associada para resolução da questão
Alternativas
Q1901431 Física
Se necessitar, use os seguintes valores para as constantes:

Aceleração local da gravidade g = 10 m/s2. 1 UA = dTerra−Sol = 150 milhões de quilômetros.
Velocidade da luz no vácuo c = 3,0×108 m/s. 
Um garoto de massa m desliza sobre um escorregador de superfície lisa e com raio de curvatura constante dado por R. O platô superior de onde o menino inicia a sua descida encontra-se à altura H do chão. Calcule a reação normal de contato que a rampa exerce sobre o garoto no instante iminentemente anterior `a chegada aproximadamente horizontal dele ao chão.
Imagem associada para resolução da questão
Alternativas
Q1901429 Física
Se necessitar, use os seguintes valores para as constantes:

Aceleração local da gravidade g = 10 m/s2. 1 UA = dTerra−Sol = 150 milhões de quilômetros.
Velocidade da luz no vácuo c = 3,0×108 m/s. 
A bola A, de massa m, é liberada a partir do repouso de um edifício exatamente quando a bola B, de massa 3m, é lançada verticalmente para cima a partir do solo. As duas bolas colidem quando a bola A tem o dobro da velocidade de B e sentido oposto. O coeficiente de restituição da colisão é dado por e = 0,5. Determine a razão das velocidades, |vA/vB|, logo após o choque. 
Alternativas
Q1901428 Física
Se necessitar, use os seguintes valores para as constantes:

Aceleração local da gravidade g = 10 m/s2. 1 UA = dTerra−Sol = 150 milhões de quilômetros.
Velocidade da luz no vácuo c = 3,0×108 m/s. 
Em 2019, no 144º aniversário da Convenção do Metro, as unidades básicas do SI foram redefinidas pelo Escritório Internacional de Pesos e Medidas (BIPM). A seguir, são feitas algumas afirmações sobre as modificações introduzidas pela redefinição de 2019.

1. São apenas sete as constantes da natureza definidas como exatas, a saber: a velocidade da luz (c), a frequência de transição de estrutura viperina do Césio-133 (∆νCs), a constante de Planck (h), a carga elementar (e), a constante de Boltzmann (kB), o número de Avogrado (NA) e a eficácia luminosa da radiação monocromática na frequência de 540 THz (Kcd).
2. São apenas seis as constantes da natureza definidas como exatas, a saber: a velocidade da luz (c), a constante de Planck (h), a carga elementar (e), a constante de Boltzmann (kB), o número de Avogrado (NA) e a eficácia luminosa da radiação monocromática na frequência de 683 THz (Kcd).
4. O protótipo de platina e irídio, conservado como padrão do kg, tornou-se obsoleto e o quilograma passou a ser definido apenas em termos de constantes fundamentais exatas.
8. As sete unidades básicas na redefinição do SI são: segundo, metro, quilograma, coulomb, mol, Kelvin e candela.

Assinale a alternativa que contém a soma dos números correspondentes às afirmações verdadeiras.
Alternativas
Q1780397 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considere as curvas de solubilidade de sais inorgânicos mostradas na figura. A respeito de alguns destes sais são feitas as seguintes afirmações:
I. Dissolvendo-se 130 g de KNO3 em 200 g de água, a 40 °C, obteremos uma solução saturada com depósito de 70 g desta substância que não será dissolvida. II. Se dissolvermos 20 g de Ce2(SO4)3 em 300 g de água a 10 °C e, posteriormente, aquecermos esta solução a 90 °C, haverá gradativa precipitação da substância. III. A menor quantidade de água necessária para dissolver completamente 140 g de K2Cr2O7 a 90 °C é, aproximadamente, 150 g. IV. NaNO3 é a substância mais solúvel a 30 °C.
Das afirmações acima, está(ão) CORRETA(S)
Imagem associada para resolução da questão
Alternativas
Q1780396 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considerando os átomos de F mais afastados um do outro, assinale a opção que apresenta as moléculas na ordem de maior para menor ângulo da ligação F−Y−F (Y = S, Cl ou Xe).
Alternativas
Q1780395 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



A respeito de basicidade, assinale a opção ERRADA.
Alternativas
Q1780394 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Assinale a opção que apresenta a afirmação ERRADA sobre processos de oxidação e redução.
Alternativas
Q1780393 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Numa titulação de oxirredução, 50,00 mL de uma solução ácida de Fe(NO3)2 a 0,38 mol⋅L−1 foi titulada com uma solução padronizada de permanganato de potássio a 4,2 × 10−2 mol⋅L−1 , até que a solução resultante adquirisse leve coloração rósea. Sobre esta titulação, são feitas as seguintes afirmações:
(1) O volume da solução de permanganato de potássio gasto na titulação foi de 100 mL. (2) O menor coeficiente estequiométrico inteiro para Fe2+ na reação redox balanceada é 7. (3) No ponto final, o volume total da solução será de 120 mL. (4) Um precipitado sólido de cor esverdeada será observado como produto dessa reação. (5) O número total de elétrons envolvidos na reação redox é 22 milimols. (6) A razão entre os volumes do titulante e do titulado no ponto final é 2,1.
A soma dos números associados às afirmações CORRETAS é igual a
Alternativas
Q1780392 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considere as proposições abaixo:
(1) A intensidade da luz depende da frequência ou do comprimento de onda da radiação empregada. (2) Dentre as cores do espectro visível, a azul é a que possui maior intensidade devido ao seu menor comprimento de onda. (3) Dentro do espectro visível, a luz vermelha é a radiação que possui o menor comprimento de onda. (4) O estado do elétron em um átomo é completamente definido pelos números quânticos n, l, ml . (5) A configuração eletrônica dos átomos é determinada pelo princípio da construção, pelo princípio da exclusão de Pauli e pela regra de Hund. (6) Na tabela periódica, os pares de elementos com relação diagonal geralmente exibem propriedades químicas semelhantes.
A soma dos números associados às sentenças ERRADAS é igual a
Alternativas
Q1780391 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



As fases condensadas da matéria são consequências da ação de forças que atuam entre os átomos, íons e moléculas. Com base em seus conhecimentos sobre o tema, considere as proposições abaixo:
(1) O ponto de fusão do argônio é menor que o do xenônio em uma mesma pressão. (2) A pressão de vapor do dimetilpropano é maior que a do pentano. (3) O valor absoluto da energia potencial de interação entre a molécula de água e o Ca2+ é menor do que entre a molécula de água e o Al3+ . (4) O valor absoluto da energia potencial de interação entre a molécula de água e o Ga3+ é maior do que entre a molécula de água e o Al3+ .
A soma dos números associados às proposições ERRADAS é igual a
Alternativas
Q1780390 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considere as seguintes proposições sobre processos termodinâmicos:
I. A entropia permanece constante em um sistema fechado que sofre a ação de um processo reversível. II. A variação de entropia é nula dentro do sistema quando ele opera em um ciclo de Carnot. III. O valor absoluto da variação da energia interna de um gás ideal numa expansão reversível adiabática é maior que numa expansão reversível isotérmica. IV. Energia interna é uma propriedade cuja variação pode ser medida pelo trabalho adiabático realizado entre dois estados.
Das afirmações acima, está(ão) ERRADA(S) apenas
Alternativas
Q1780389 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



A Análise Termogravimétrica (TGA) é uma técnica empregada para avaliar o comportamento térmico de amostras mensurando a variação de massa. A figura mostra a curva de TGA típica para o oxalato de cálcio monohidratado, submetido a uma taxa constante de aquecimento, sob fluxo de um gás inerte.
Com base nessa figura e sabendo que a massa inicial corresponde a 100%, é ERRADO afirmar que
Imagem associada para resolução da questão
Alternativas
Q1780388 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Sabe-se que a condutividade molar (Λ) de uma solução iônica é dada pela razão entre a condutividade dessa solução (κ) e sua concentração molar. Considere soluções diluídas de CaCl2, NaCl eKCl com iguais concentrações em massa, para as quais são observadas as seguintes razões entre condutividades molares e entre massas molares (MM):
Imagem associada para resolução da questão

Com base nessas informações, assinale a opção CORRETA entre as condutividades das soluções. 


Alternativas
Q1780387 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considere as seguintes proposições sobre ligações químicas:
I. O comprimento de ligação e a energia de ligação são influenciados pela multiplicidade da ligação, pela ressonância e pelo raio atômico. II. Cargas formais consideram ligações químicas perfeitamente covalentes ao assumir que os elétrons são igualmente compartilhados. III. O poder de polarização de um cátion é maior quanto maiores forem o seu volume e a sua carga. A interação deste cátion com um ânion altamente polarizável tende a apresentar um maior caráter covalente. IV. Na ressonância há uma diminuição da energia em função da contribuição de estruturas que possuem a mesma geometria, porém com diferentes arranjos dos elétrons.
Das afirmações acima, está(ão) ERRADA(S) apenas
Alternativas
Q1780386 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considere a reação genérica A + 2B → C, cuja lei de velocidade é dada por ν = k[A]α [B]β . Em um estudo cinético, foram obtidas as velocidades da reação em cinco experimentos distintos, em que as concentrações das espécies A e B variaram conforme a tabela abaixo.
Imagem associada para resolução da questão

Com base nesses experimentos, assinale a opção que apresenta os valores corretos de α, β, k, X e Y, respectivamente.
Alternativas
Q1780385 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considere as seguintes proposições a respeito da química de compostos de carbono:
I. Penteno e ciclopentano não são isômeros estruturais, enquanto butano e ciclobutano são. II. Cloroeteno pode sofrer polimerização por adição, enquanto o tetrafluoretano não. III. 2-Bromopropano é opticamente ativo, enquanto 1,2-dicloropentano não é. IV. Sob exposição à luz, a reação entre cloro e metano ocorre por substituição. Por outro lado, na ausência de luz, a reação entre bromo e eteno ocorre por adição. V. A desidratação intramolecular de álcoois orgânicos forma alcenos.
Das afirmações acima, está(ão) CORRETA(S) apenas
Alternativas
Q1780384 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Sejam dadas as reações no equilíbrio envolvidas nos processos de carga e descarga de uma bateria chumbo-ácido e seus respectivos potenciais padrão de eletrodo versus EPH (Eο ) ou constantes de dissociação ácidas (Ka), todos a 25 °C.
Imagem associada para resolução da questão

Sabe-se que a bateria converte Pb e PbO2 em PbSO4 na descarga e que, em condições normais, o pH da solução eletrolítica é menor que 1.
A respeito dessa bateria, foram feitas as seguintes afirmações:
I. Em condições normais, durante a descarga, a semirreação principal que ocorre no ânodo é a i e, no cátodo, é a iv. II. Em condições normais, o potencial da bateria no equilíbrio pode ser representado por E = 1,93 − 0,06pH + 0,06logImagem associada para resolução da questão III. Em condições padrão, a eletrólise da água sempre acontece. IV. Em pH ∼ 2, os potenciais das semirreações secundárias igualam-se aos potenciais das semirreações principais do ânodo e do cátodo, respectivamente, portanto a eletrólise da água não ocorre quando o eletrólito tem pH > 2.
Considerando apenas argumentos baseados no equilíbrio termodinâmico a 25 °C, está(ão) ERRADA(S) apenas a(s) afirmação(ões)

Alternativas
Q1780383 Química

Constantes


Constante de Avogadro (NA) = 6,02 × 1023 mol−1

Constante de Faraday (F) = 9,65 × 104 C⋅mol−1 = 9,65 × 104 A⋅s⋅mol−1 = 9,65 × 104 J⋅V−1 ⋅mol−1

Carga elementar = 1,60 × 10−19 C

Constante dos gases (R) = 8,21 × 10−2 atm⋅L⋅K−1⋅mol−1 = 8,31 J⋅K −1 ⋅mol−1 = 1,98 cal⋅K−1 ⋅mol−1

Constante de Planck (h) = 6,63 × 10−34 J⋅s

Velocidade da luz no vácuo = 3,0 × 108 m⋅s −1

Número de Euler (e) = 2,72 


Definições

Pressão: 1 atm = 760 mmHg = 1,01325 × 105 N⋅m−2 = 1,01325 bar

Energia: 1 J = 1 N⋅m = 1 kg⋅m2 ⋅s−2 = 6,24 × 1018 eV

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol⋅L−1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias.

u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol⋅L−1

ln X = 2,3 log X

EPH = eletrodo padrão de hidrogênio 



Considerando substâncias comparadas nas mesmas condições de pressão e temperatura, assinale a opção que apresenta a afirmação ERRADA sobre interações intermoleculares na fase líquida.
Alternativas
Respostas
121: C
122: C
123: A
124: D
125: B
126: C
127: A
128: E
129: E
130: A
131: C
132: C
133: A
134: E
135: B
136: D
137: E
138: D
139: B
140: D