Questões Militares Para física

Foram encontradas 3.929 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q1780341 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um cilindro condutor oco de comprimento muito longo, cuja secção transversal tem raio interno R/2 e raio externo R, é atravessado por uma densidade de corrente elétrica uniforme e paralela ao eixo do cilindro. Qual representação gráfica abaixo melhor descreve a intensidade do campo magnético Imagem associada para resolução da questão como função da coordenada radial r a partir do eixo de simetria do sistema?
Alternativas
Q1780340 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Deseja-se capturar uma foto que ilustre um projétil, viajando a 500 m/s, atravessando uma maçã. Para isso, é necessário usar um flash de luz com duração compatível com o intervalo de tempo necessário para que o projétil atravesse a fruta. A intensidade do flash de luz está associada à descarga de um capacitor eletricamente carregado, de capacitância C, através de um tubo de resistência elétrica dada por 10 Ω. Assinale a alternativa com o valor de capacitância mais adequado para a aplicação descrita.
Alternativas
Q1780338 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Três esferas metálicas maciças E1, E2 e E3, feitas de um mesmo material e de raios R1, R2 e R3, respectivamente, podem trocar cargas elétricas entre si a partir do acionamento de contatos elétricos. Inicialmente apenas E1 encontra-se eletricamente carregada. Em um primeiro momento estabelece-se contato elétrico entre E1 e E2, que é cortado quando o sistema atinge o equilíbrio elétrico. A seguir, estabelece-se contato entre E2 e E3. Ao final do processo, observa-se que a carga elétrica líquida das três esferas é igual. Desprezando a capacitância mútua entre as esferas, assinale a proporção entre as massas de E1, E2 e E3, respectivamente.
Alternativas
Q1780337 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

No experimento de dupla fenda de Young, suponha que a separação entre as fendas seja de 16 µm. Um feixe de luz de comprimento de onda 500 nm atinge as fendas e produz um padrão de interferência. Quantos máximos haverá na faixa angular dada por −30oθ ≤ 30o ?
Alternativas
Q1780336 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Considere uma lente biconvexa feita de um material com índice de refração 1,2 e raios de curvatura de 5,0 cm e 2,0 cm. Ela é imersa dentro de uma piscina e utilizada para observar um objeto de 80 cm de altura, também submerso, que se encontra afastado a 1,0 m de distancia. Sendo o índice de refração da água igual a 1,3, considere as seguintes afirmativas:
I. A lente é convergente e a imagem é real. II. A lente ´e divergente e a imagem é virtual. III. A imagem está a 31 cm da lente e tem 25 cm de altura.
Considerando V como verdadeira e F como falsa, as afirmações I, II e III são, respectivamente,
Alternativas
Q1780335 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um violão é um instrumento sonoro de seis cordas de diferentes propriedades, fixas em ambas as extremidades, acompanhadas de uma caixa de ressonância. Diferentes notas musicais são produzidas tangendo uma das cordas, podendo-se ou não alterar o seu comprimento efetivo, pressionando-a com os dedos em diferentes pontos do braço do violão. A respeito da geração de sons por esse instrumento são feitas quatro afirmações:
I. Cordas mais finas, mantidas as demais propriedades constantes, são capazes de produzir notas mais agudas. II. O aumento de 1,00% na tensão aplicada sobre uma corda acarreta um aumento de 1,00% na frequência fundamental gerada. III. Uma corda de nylon e uma de aço, afinadas na mesma frequência fundamental, geram sons de timbres distintos. IV. Ao pressionar uma corda do violão, o musicista gera um som de frequência maior e comprimento de onda menor em comparação ao som produzido pela corda tocada livremente.

Considerando V como verdadeira e F como falsa, as afirmações I, II, III e IV são, respectivamente,
Alternativas
Q1780334 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um objeto de massa M, preso a uma mola ideal, realiza uma oscilação livre de frequência ƒEm um determinado instante, um segundo objeto de massa m é fixado ao primeiro. Verifica-se que o sistema tem sua frequência de oscilação reduzida de ∆ƒ, muito menor que ƒ. Sabendo que (1 + x)n ≈ 1 + nx, para |x| « 1, pode-se afirmar que ƒ é dada por
Alternativas
Q1780333 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um recipiente isolado é dividido em duas partes. A região A, com volume VA, contém um gás ideal a uma temperatura TA. Na região B, com volume VB = 2VA, faz-se vácuo. Ao abrir um pequeno orifício entre as regiões, o gás da região A começa a ocupar a região B. Considerando que não há troca de calor entre o gás e o recipiente, a temperatura de equilíbrio final do sistema é
Alternativas
Q1780332 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um recipiente, de secção de área constante e igual a A, é preenchido por uma coluna de líquido de densidade ρ e altura H. Sobre o líquido encontra-se um pistão de massa M, que pode se deslocar verticalmente livre de atrito. Um furo no recipiente é feito a uma altura h, de tal forma que um filete de água é expelido conforme mostra a figura. Assinale a alternativa que contém o alcance horizontal D do jato de água.
Imagem associada para resolução da questão
Alternativas
Q1780331 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Considere um sistema de três satélites idênticos de massa m dispostos nos vértices de um triângulo equilátero de lado d. Considerando somente o efeito gravitacional que cada um exerce sobre os demais, calcule a velocidade orbital dos satélites com respeito ao centro de massa do sistema para que a distância entre eles permaneça inalterada.
Alternativas
Q1780330 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Uma bola de gude de raio r e uma bola de basquete de raio R são lançadas contra uma parede com velocidade horizontal v e com seus centros a uma altura h. A bola de gude e a bola de basquete estão na iminência de contato entre si, assim como ambas contra a parede. Desprezando a duração de todas as colisões e quaisquer perdas de energia, calcule o deslocamento horizontal ∆S da bolinha de gude ao atingir o solo.
Imagem associada para resolução da questão
Alternativas
Q1780329 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um trem parte do repouso sobre uma linha horizontal e deve alcançar a velocidade de 72 km/h. Até atingir essa velocidade, o movimento do trem tem aceleração constante de 0,50 m/s2 , sendo que resistências passivas absorvem 5,0% da energia fornecida pela locomotiva. O esforço médio, em N, fornecido pela locomotiva para transportar uma carga de 1,0 ton é
Alternativas
Q1780328 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

O sistema de unidades atômicas de Hartree é bastante útil para a descrição de sistemas quânticos microscópicos. Nele, faz-se com que a carga fundamental e, a massa do elétron m0, a constante eletrostática do vácuo K0 e a constante de Planck reduzida h sejam todas numericamente iguais á unidade.
Assinale a alternativa que contém a ordem de grandeza do valor numérico da velocidade da luz no vácuo c, nesse sistema de unidades.
Alternativas
Q1779422 Física
Um carro a 108 km/h se encontra prestes a iniciar uma ultrapassagem de um caminhão que está a 72 km/h, conforme a figura. Ambos realizam um movimento retilíneo uniforme durante todo percurso. Imagem associada para resolução da questão O tempo, em segundos, que o carro leva para ultrapassar o caminhão (ponto A chegar à mesma posição do ponto B, em relação ao referencial x) é igual a
Alternativas
Q1779421 Física
Partículas β são lançadas com uma velocidade de módulo igual a 227500 km/s, perpendicularmente a um campo magnético uniforme Imagem associada para resolução da questão de intensidade 0,1 T, com o sentido indicado na figura. Essas partículas atingem um anteparo, no ponto C, a uma distância de 26 mm do orifício de entrada, ponto A, após percorrerem uma trajetória igual a uma semi-circunferência, conforme a figura. Nessas condições foi possível medir a relação carga/massa dessas partículas no valor de ____ C/kg. 
Imagem associada para resolução da questão
Alternativas
Q1779419 Física
Um aeromodelo desloca-se horizontalmente em linha reta de sul (S) para norte (N) a uma velocidade constante de módulo igual a 3 m/s. A partir de um determinado instante, um vento horizontal constante de leste (L) para oeste (O) e de módulo igual a 3 m/s passa a incidir sobre esse aeromodelo durante todo restante do trajeto. Assinale a alternativa que indica corretamente a direção para a qual a força produzida pelo motor do aeromodelo deve estar de maneira que o aeromodelo mantenha o deslocamento horizontal de sul para norte e com a mesma velocidade.
Considere o referencial a seguir Imagem associada para resolução da questão
Alternativas
Q1779418 Física
Um bloco homogêneo de madeira, de massa M, está preso por um fio ideal no teto. Um projétil, de massa m, com velocidade constante v0 atinge exatamente o centro de massa do bloco, incrustando-se no bloco, conforme a figura a seguir. Com isso, o centro de massa do bloco, agora com o projétil agregado, sobe uma altura h, com relação a trajetória retilínea original do projétil, atingindo nessa altura uma velocidade nula. Desprezando qualquer tipo de atrito e considerando a intensidade da aceleração da gravidade no local igual a g, dentre as alternativas a seguir, qual expressa corretamente o valor da grandeza h?
Imagem associada para resolução da questão
Alternativas
Q1779417 Física
O circuito abaixo é constituído de uma fonte de alimentação ideal, 4 resistores ôhmicos e um amperímetro ideal. O circuito apresenta também um dispositivo composto de uma barra condutora, de resistência elétrica nula, que normalmente fica afastada. Mas se o dispositivo for acionado, a barra irá encostar nos pontos A, B e C ao mesmo tempo, colocando-os em contato. Nas condições iniciais, o amperímetro indica um determinado valor de intensidade de corrente elétrica. Assinale a alternativa que apresenta o valor da resistência elétrica R, em ohms, para que a indicação no amperímetro não se altere, quando o dispositivo for acionado Imagem associada para resolução da questão
Alternativas
Q1779416 Física
Um garoto amarra uma pedra a um barbante e a faz girar em um plano vertical com uma rotação constante de 150 rpm (rotações por minuto). A sombra da pedra projetada no chão realiza um movimento de vai e vem em uma trajetória representada por um segmento de reta de 1,5 m de comprimento. Considerando o movimento da sombra da pedra como um MHS com fase inicial nula, assinale a alternativa que apresenta corretamente a equação da elongação para esse movimento, no Sistema Internacional de Unidades.
Alternativas
Q1779415 Física
Duas amostras “A” e “B” de água no estado líquido de mesma massa (m) e mesmo calor específico (c) possuem temperatura iniciais diferentes TIA e TIB, sendo TIA maior que TIB. A mistura obtida com as duas amostras, após algum tempo, atinge a temperatura final TF. A quantidade de calor que a amostra “A” cedeu é igual a ____ .
Alternativas
Respostas
581: A
582: D
583: E
584: E
585: B
586: C
587: E
588: C
589: C
590: B
591: B
592: D
593: B
594: C
595: C
596: C
597: B
598: C
599: B
600: B