Questões Militares
Nível médio
Foram encontradas 45.670 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
I. A lente é convergente e a imagem é real. II. A lente ´e divergente e a imagem é virtual. III. A imagem está a 31 cm da lente e tem 25 cm de altura.
Considerando V como verdadeira e F como falsa, as afirmações I, II e III são, respectivamente,
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
I. Cordas mais finas, mantidas as demais propriedades constantes, são capazes de produzir notas mais agudas. II. O aumento de 1,00% na tensão aplicada sobre uma corda acarreta um aumento de 1,00% na frequência fundamental gerada. III. Uma corda de nylon e uma de aço, afinadas na mesma frequência fundamental, geram sons de timbres distintos. IV. Ao pressionar uma corda do violão, o musicista gera um som de frequência maior e comprimento de onda menor em comparação ao som produzido pela corda tocada livremente.
Considerando V como verdadeira e F como falsa, as afirmações I, II, III e IV são, respectivamente,
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Quando precisar use os seguintes valores para as constantes:
Aceleração local da gravidade g = 10 m/s2 .
Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .
Velocidade da luz no vácuo c = 3,0×108 m/s.
Constante de Planck reduzida h = 1,05×10−34 J.s.
Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .
Carga elétrica elementar e = 1,6×10−19C.
Massa do elétron m0 = 9,1×10−31 kg.
Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.
Assinale a alternativa que contém a ordem de grandeza do valor numérico da velocidade da luz no vácuo c, nesse sistema de unidades.
Curva _________ é usada para fornecer transição gradual de uma linha reta ou tangente para a curva circular plena. Começa muito suave, com um raio infinito, e aumenta sua curvatura.
( ) É essencial manter a mira sobre pontos definidos, mas não firme e prumado. ( ) Se o porta-mira não é cuidadoso, barro, neve ou gelo podem se acumular na base da mira. Isso pode causar erros graves no nivelamento. ( ) Visando uma luneta, percebemos que, se movermos um pouco o olho de um lado ao outro, há um movimento aparente do cruzamento dos fios da retículas sobre a imagem ou o objeto parece se mover. Isso deve-se à paralaxe, que pode causar erros significativos a menos que seja corrigida. ( ) Em solo fofo ou pantanoso ou mesmo asfalto aquecido, haverá certamente alguma acomodação e afundamento do tripé. Entre os instantes das leituras da visada de ré e da visada de vante, haverá o afundamento, não interferindo numa visada necessária.