Questões de Concurso
Sobre energia mecânica e sua conservação em física
Foram encontradas 194 questões
Uma esfera de massa 6 gramas, partindo do repouso, desliza sobre uma pequena rampa e rola sobre o solo, conforme mostrado na figura1. Considerando g=10m/s2 e o coeficiente de atrito cinético da esfera com o solo µc = 0,5, assinale a alternativa que corresponde à distância da base da rampa aonde a esfera irá parar. Desprezar o atrito entre a esfera e a rampa.
Um bloco, com 5 kg de massa, é abandonado de uma altura h = 200 cm de um plano inclinado e percorre um plano horizontal, comprimindo uma mola disposta conforme a figura. Desprezando os atritos e considerando a constante de mola k = 2 N/m, a deformação da mola é:
A figura acima representa dois blocos, 1 e 2, com
massas m e 2 m, respectivamente, que começaram a se movimentar,
de uma mesma altura h, a partir do repouso, em planos inclinados.
Os coeficientes de atrito dinâmico dos blocos 1 e 2, com relação às
superfícies dos planos inclinados, são, respectivamente, iguais a µ1
e µ2 .
Desprezando os atritos, marque a opção que corresponda a máxima deformação sofrida pela mola.
Um corpo de massa de m é abandonado a partir do repouso, no ponto A, conforme a figura. O corpo atinge o ponto B somente deslizando pela superfície sem atrito do corpo de massa M. Não há atrito entre o bloco M e a superfície de contato, e M = 4 m.
Considerando-se g = 10 m/s2
e sabendo-se que R = 9,0 m, a velocidade do bloco m, imediatamente antes de sair
pelo ponto B, é:
O corpo C, de massa m, é abandonado no ponto A do cano liso, na figura abaixo. Sabe-se que a região do looping possui raio R. Desprezando-se qualquer resistência ao deslocamento e sabendo-se que a aceleração gravitacional local é g, o valor mínimo da velocidade, a fim de que seja possível concluir o looping, é:
Dado: No ponto B, há um dispositivo que gera uma força desprezível a fim de concluir a volta.
São dados três objetos, m1 ,m2 e m3 , pendurados por fios inextensíveis de massa desprezível que podem oscilar livremente, formando três sistemas. Os objetos m1 e m2 estão próximos da superfície da Terra, onde a aceleração da gravidade é g, enquanto o objeto m3 está próximo da superfície de um planeta onde a sua massa é a metade da massa da Terra. Sejam h1 ,h2 e h3 as alturas máximas atingidas pelos objetos m1 ,m2 e m3 respectivamente, em cada ciclo completo de oscilação. Há dissipação de energia no sistema 2, durante a oscilação.
Sabendo-se que m1 = 3m2 = m3 /2 e que v1 = v2 = 2v3 , as relações corretas entre as alturas são dadas por:
Obviamente a Terra exerce uma atração sobre os objetos que estão sobre sua superfície. Newton se deu conta de que esta força se estendia até a Lua e produzia a aceleração centrípeta necessária para manter a Lua em órbita. O mesmo acontece com o Sol e os planetas. Então Newton formulou a hipótese da existência de uma força de atração universal entre os corpos em qualquer parte do Universo.
Internet: <http://astro.if.ufrgs.br>
Com base nas informações fornecidas no texto e nos conhecimentos relacionados à gravitação, julgue o item subsecutivo.
Um satélite orbita a Terra, em um movimento circular, com uma velocidade vs. Para escapar do planeta, o satélite precisará atingir velocidade igual a .
Segundo o princípio da conservação da energia, a energia mecânica total de um sistema que não sofre a ação de forças externas permanece constante. Assim, a energia é conservada quando a energia mecânica total é inalterada. Com base no princípio da conservação da energia, julgue o item a seguir, considerando que a aceleração da gravidade (g) seja igual a 10 m / s2 .
Uma bola de 380 g foi arremessada verticalmente, de baixo para cima, com velocidade inicial de módulo igual a 10 m/s. A altura máxima (h), em metros, que a bola atinge, supondo que a resistência do ar seja desprezível, está situada no intervalo 4,8m<h< 5,1 m.
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. A energia cinética do sistema é conservada — ou seja, permanece constante — na direção do movimento mostrado nas figuras, devido à conservação do momento linear.