Questões de Concurso Sobre energia mecânica e sua conservação em física

Foram encontradas 198 questões

Ano: 2016 Banca: FGV Órgão: SEE-PE Prova: FGV - 2016 - SEE-PE - Professor de Física |
Q706353 Física

A figura a seguir mostra uma região delimitada em cujo interior há um campo magnético uniforme Imagem associada para resolução da questão perpendicular ao plano da figura e apontando para dentro.

Imagem associada para resolução da questão

Uma partícula de massa m carregada com uma carga elétrica q penetra nessa região com uma velocidade Imagem associada para resolução da questão perpendicular ao campo magnético. Ela descreve uma trajetória semicircular e vai se chocar com a parede que delimita a região a uma distância d do ponto de entrada.

A esse respeito, assinale V para a afirmativa verdadeira e F para a falsa.

( ) A energia cinética da partícula se mantém constante enquanto ela descreve sua trajetória semicircular.

( ) A distância d é igual a Imagem associada para resolução da questão.

( ) O módulo da variação do momento linear da partícula entre o instante em que penetra na região e o instante em que se choca com a parede que a delimita é nulo.

As afirmativas são, respectivamente,

Alternativas
Q677278 Física
Um carrinho desce do repouso do ponto A em direção ao ponto C em uma montanha russa conforme indicado na figura a seguir.
Imagem associada para resolução da questão
Se a velocidade do carrinho ao passar pelo ponto C é de 8 m/s e entre os pontos A e C há uma perda de 4,5 . 103 J em sua energia mecânica, então a massa desse carrinho é de:
Alternativas
Ano: 2016 Banca: IADES Órgão: PC-DF Prova: IADES - 2016 - PC-DF - Perito Criminal - Física |
Q668526 Física

A equação de Schrödinger é a equação básica da mecânica quântica. Ela descreve o comportamento da função de onda no tempo e no espaço. Para o caso estacionário, tem-se Imagem associada para resolução da questão, em que E representa as energias possíveis do sistema.

Considerando um elétron sob a ação de um potencial elástico Imagem associada para resolução da questão, é correto afirmar que as energias possíveis são

Alternativas
Ano: 2016 Banca: IADES Órgão: PC-DF Prova: IADES - 2016 - PC-DF - Perito Criminal - Física |
Q668490 Física
Considere hipoteticamente que uma criança de massa m desce do topo de um escorregador que se encontra a uma altura h em relação ao solo. Admitindo que a criança parta do repouso e que o atrito seja nulo, a expressão que corresponde à velocidade final da criança é
Alternativas
Q668427 Física

Imagem associada para resolução da questão

A figura precedente representa um bloco de massa m ligado a uma mola de constante elástica k oscilando em uma superfície horizontal sem atrito. Com base nessas informações, assinale a opção correta.

Alternativas
Q668426 Física

Imagem associada para resolução da questão


Em uma cena de crime, a equipe pericial encontrou um dispositivo cujo sistema de acionamento está apresentado na figura precedente. Ao se puxar a alavanca, é possível comprimir a mola, de constante elástica k = 800 N/m, por uma distância x, a partir do seu estado de repouso.

Com base nessas informações e sabendo que o projétil provoca lesão em uma pessoa se for disparado com uma energia de pelo menos 0,16 J, assinale a opção que apresenta, corretamente, a partir de qual valor de x um disparo desse dispositivo provoca lesão em uma pessoa.

Alternativas
Q909730 Física
Em uma pista de boliche, uma bola A ficou, acidentalmente, parada bem no meio da pista. Um competidor conseguiu a proeza de atingi-la com outra bola idêntica B. Imediatamente após a colisão, as bolas passaram a se mover em direções diferentes. O ruído provocado pela colisão foi ouvido por todos os presentes. A respeito dessa colisão, é correto afirmar que
Alternativas
Q878972 Física

Um carrinho de massa m = 2 kg é lançado de duas formas diferentes, e sua velocidade é medida ao final de um percurso. A primeira forma corresponde a abandoná-lo do alto de uma rampa curva, de uma altura h = 5 m. Nessa situação, ele chega ao final da rampa com velocidade 10 m/s. A segunda forma corresponde a utilizar um mecanismo disparador, com uma mola de constante elástica grande, e lançar o carrinho em uma superfície horizontal plana. Nessa segunda forma, a velocidade de saída do mecanismo disparador é proporcional à compressão da mola antes do lançamento, e, no primeiro teste feito com o mecanismo disparador, com a mola comprimida de 10 cm, o carrinho atingiu a velocidade de 10 m/s.


Desprezando os efeitos de atritos, para obter, nos dois casos, a velocidade final de 20 m/s, a altura de abandono do carrinho e a compressão da mola devem ser, respectivamente,

Alternativas
Q861864 Física
Alguns professores fazem a analogia da eletricidade percorrendo um fio como sendo água percorrendo uma mangueira. A corrente elétrica seria o fluxo de água e a resistência elétrica seria o diâmetro da mangueira. Assinale a alternativa que estabelece a correta analogia com a tensão elétrica.
Alternativas
Q861860 Física
Suponha duas esferas de massas idênticas, descendo cada uma um plano inclinado com ângulos diferentes. Ambas as esferas partem do estado de repouso, de mesma altura em relação ao solo, e o atrito com os planos é desprezível. Considerando o Princípio da Conservação da Energia, assinale a alternativa correta.
Alternativas
Q861847 Física
Segundo Aristóteles, cada coisa no universo possui seu “lugar natural”, e tende naturalmente a voltar para este local, a menos que alguma força a impeça. Com isto, ele explicava os diferentes movimentos realizados pelos corpos (uma pedra cai porque seu lugar natural é o solo, a fumaça sobe porque seu lugar natural é o céu, e assim por diante). Assinale o conceito da Física Moderna que não está relacionado diretamente com esta ideia do “lugar natural”.
Alternativas
Q861840 Física

Uma esfera de massa 6 gramas, partindo do repouso, desliza sobre uma pequena rampa e rola sobre o solo, conforme mostrado na figura1. Considerando g=10m/s2 e o coeficiente de atrito cinético da esfera com o solo µc = 0,5, assinale a alternativa que corresponde à distância da base da rampa aonde a esfera irá parar. Desprezar o atrito entre a esfera e a rampa.


Imagem associada para resolução da questão

Alternativas
Q861834 Física
No filme “Thelma e Louise” (1991), na cena final as protagonistas se lançam com o carro do alto de um precipício. Sendo h a altura do precipício, d a distância que o carro atinge o solo em relação à borda do precipício e g a aceleração da gravidade, e considerando que a superfície do alto de precipício é horizontalmente plana, assinale a alternativa que corresponde à velocidade do carro no momento em que perde o contato com o solo.
Alternativas
Q612739 Física

A figura acima ilustra um arranjo utilizado para demolição de parede. Nesse arranjo, uma esfera de massa M, considerada idealmente como uma partícula, encontra-se pendurada por um cabo de aço inextensível de comprimento L preso a uma argola sem atrito. O cabo L faz um ângulo θ com relação a direção vertical e a massa M se encontra, inicialmente, à distância D do anteparo A (parede).

Considerando essa situação, julgue o item que se segue.

Para não haver choque com a parede, D = L ⋅ cosθ.

Alternativas
Q612738 Física

A figura acima ilustra um arranjo utilizado para demolição de parede. Nesse arranjo, uma esfera de massa M, considerada idealmente como uma partícula, encontra-se pendurada por um cabo de aço inextensível de comprimento L preso a uma argola sem atrito. O cabo L faz um ângulo θ com relação a direção vertical e a massa M se encontra, inicialmente, à distância D do anteparo A (parede).

Considerando essa situação, julgue o item que se segue.

Considere que, ao se chocar com o anteparo A, a partícula de massa M fique em repouso, e posicionada na mesma altura que estava ao ser liberada. Nesse caso, o trabalho realizado pelas forças dissipativas que atuam entre o anteparo e a partícula será igual a M⋅v2 /2, em que v é o módulo da velocidade imediatamente antes do choque.


Alternativas
Q612730 Física


    A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura. 

Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .

Considerando a existência de atrito entre o carrinho e a pista, a energia potencial do carrinho na metade do percurso sobre o plano será igual à metade da energia potencial que ele teria ao alcançar o vértice do plano.

Alternativas
Q612729 Física


    A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura. 

Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .

Se a velocidade inicial do carrinho é igual a zero, então, ao subir o plano, o carrinho atingirá uma velocidade menor que 5 m/s no vértice superior do trilho.

Alternativas
Q612728 Física


    A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura. 

Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .

Desprezando-se o atrito e considerando-se que a esfera tenha massa igual a 5 g, é correto afirmar que, caso a corda se rompa quando o carrinho estiver no topo do plano, a esfera atingirá o solo com energia superior a 20 × 10-3 J.

Alternativas
Q612727 Física


    A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura. 

Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .

Considere que o carrinho se choque com uma mola, de constante de mola igual a K, na parte superior do trilho e a comprima por uma distância X. Suponha também que a força de atrito entre carrinho e trilho tenha sido suficiente para gastar toda a energia cinética que o carrinho possuía imediatamente antes do choque. Nessa situação, se K⋅X = m⋅g, então o carrinho ficará parado, preso à mola, que estará comprimida por uma distância X.

Alternativas
Q612726 Física


    A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura. 

Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .

Na ausência de atrito com os trilhos, se o carrinho se chocasse com uma mola na parte superior do trilho, ele voltaria no sentido oposto, impelido pela mola, mas não chegaria ao mesmo ponto de onde partiu, devido à presença da força para cima introduzida pela presença da esfera.

Alternativas
Respostas
121: A
122: B
123: B
124: E
125: B
126: E
127: B
128: E
129: B
130: C
131: B
132: A
133: A
134: E
135: C
136: C
137: E
138: E
139: E
140: E