Questões de Concurso
Comentadas sobre hidrostática em física
Foram encontradas 113 questões

Uma barra cilíndrica maciça de comprimento H e área da base A é dividida em duas metades de igual comprimento e cada uma delas com densidades de massa uniformes, respectivamente denotadas por P1 e P2, sendo P1 > P2. Essa barra é largada em repouso de uma certa altura próxima à superfície da terra, de tal modo que a direção do eixo de simetria do cilindro é obliquo em relação à direção vertical, e a parte mais pesada da barra fica abaixo da parte mais leve, conforme mostra a figura precedente. Atuam na barra apenas a força peso e o empuxo do ar, cuja densidade é denotada por Par. A pressão hidrostática do ar é a mesma em cada ponto da superfície da barra.
A partir dessas informações, considerando-se que R denota a distância do centro de massa (CM) ao centro geométrico do cilindro e assumindo-se por θ o ângulo entre a direção vertical e o eixo de simetria do cilindro, bem como por g a aceleração da gravidade na superfície da terra, é correto afirmar que, enquanto a barra cai, o módulo do torque resultante sobre a barra em relação ao centro de massa será dado por

Os pontos A e B estão no mesmo nível em relação ao solo e servem apenas como referência para que se possa analisar a pressão e a velocidade do fluido conforme ele evolui de uma posição para outra. Considere que pA e vA correspondem à pressão e à velocidade do fluido na posição A e que pB e vB correspondem à pressão e à velocidade do fluido na posição B.
Em relação a essas grandezas, afirma-se que

A diferença de pressão (pA – pB) vale, aproximadamente,
No que se refere à estática dos fluidos e aos princípios de Pascal, Arquimedes e Stevin, julgue o item.
Suponha-se que uma pedra de peso w, em N, tenha sido presa a um dinamômetro e mergulhada em água e que o dinamômetro tenha acusado um peso aparente wap, também em N. Nesse caso, é correto afirmar que amassa específica da pedra (ΡPedra) deve ser expressa por ΡPedra = . ΡL, sendo a massa específica da água igual a ΡL.
Na figura a seguir, está representado um sistema ideal no qual uma esfera indeformável, de raio R e densidade γ, foi movida para uma posição, presa e em repouso, a uma profundidade D de um volume de fluido de densidade ρ. A esfera foi solta dessa posição e, pela ação da força empuxo E, foi elevada até uma altura acima da lâmina d’água; depois, retornou à superfície e permaneceu flutuando. Na figura, Sp se refere a um sensor de pressão colocado no fundo do recipiente.
A partir das informações precedentes, e assumindo que a gravidade local seja g, a densidade do fluido seja constante, seu volume seja muito superior ao da esfera e que a força viscosa no fluido seja desprezível, julgue o item a seguir.
O módulo da aceleração que a esfera atinge, dentro dofluido, por ação do empuxo, é g(ρ/Y - 1).
Na figura a seguir, está representado um sistema ideal no qual uma esfera indeformável, de raio R e densidade γ, foi movida para uma posição, presa e em repouso, a uma profundidade D de um volume de fluido de densidade ρ. A esfera foi solta dessa posição e, pela ação da força empuxo E, foi elevada até uma altura acima da lâmina d’água; depois, retornou à superfície e permaneceu flutuando. Na figura, Sp se refere a um sensor de pressão colocado no fundo do recipiente.
A partir das informações precedentes, e assumindo que a gravidade local seja g, a densidade do fluido seja constante, seu volume seja muito superior ao da esfera e que a força viscosa no fluido seja desprezível, julgue o item a seguir.
Na situação em que a esfera flutua, o volume de água
deslocado por ela é 4πR3Y / 3ρ .
Na figura a seguir, está representado um sistema ideal no qual uma esfera indeformável, de raio R e densidade γ, foi movida para uma posição, presa e em repouso, a uma profundidade D de um volume de fluido de densidade ρ. A esfera foi solta dessa posição e, pela ação da força empuxo E, foi elevada até uma altura acima da lâmina d’água; depois, retornou à superfície e permaneceu flutuando. Na figura, Sp se refere a um sensor de pressão colocado no fundo do recipiente.
A partir das informações precedentes, e assumindo que a gravidade local seja g, a densidade do fluido seja constante, seu volume seja muito superior ao da esfera e que a força viscosa no fluido seja desprezível, julgue o item a seguir.
Se o sensor de pressão Sp for uma pastilha muito pequena
orientada a 45°, o valor da pressão PF lida por ele será PF /√2 .
Na figura a seguir, está representado um sistema ideal no qual uma esfera indeformável, de raio R e densidade γ, foi movida para uma posição, presa e em repouso, a uma profundidade D de um volume de fluido de densidade ρ. A esfera foi solta dessa posição e, pela ação da força empuxo E, foi elevada até uma altura acima da lâmina d’água; depois, retornou à superfície e permaneceu flutuando. Na figura, Sp se refere a um sensor de pressão colocado no fundo do recipiente.
A partir das informações precedentes, e assumindo que a gravidade local seja g, a densidade do fluido seja constante, seu volume seja muito superior ao da esfera e que a força viscosa no fluido seja desprezível, julgue o item a seguir.
A força de empuxo será diretamente proporcional ao raio da
esfera e da profundidade D, mas inversamente proporcional à
densidade do fluido circundante.
Após realização de experimentos,
verificou-se que, quando há uma velocidade
relativa entre um fluido e um corpo, este
último experimenta uma força de atrito,
também chamado de arrasto FR, que se opõe
ao movimento relativo, de acordo com a
expressão . Onde C é o
coeficiente de arrasto que depende da forma
do corpo, r é densidade do fluido e A é a área
da seção transversal efetiva do corpo.
Considerando o corpo com massa m e a
aceleração da gravidade g, qual é a
porcentagem aproximada da variação da
velocidade terminal, se diminuir a área da
seção transversal efetiva pela metade?
Para avaliar os conhecimentos de Física aplicados de forma interdisciplinar, foi pedido a um aluno do curso de Meio Ambiente do Instituto Federal que fizesse um desenho representando aquíferos e poços. O desenho é mostrado a seguir:
Figura: Adaptado de www.ufrrj.br/instituto/it/de/acidentes/agua1.htm. Acesso ern: 30 jul. 2019.
Com base no desenho feito pelo estudante, julgue qual das afirmativas a seguir está correta.

De acordo com o exposto acima, determine qual a força horizontal a que está submetida a represa por causa da pressão manométrica da água. (Se preciso, use g = 10 m/s²).
Magno possui uma chácara na zona rural de Teresina. Na chácara, construiu uma caixa d’agua com capacidade igual a 5m3 . Para a manutenção dela, instalou um registro na base.
Quando Magno inicia a limpeza, abre o registro da caixa d’agua, que está a 4m do solo e da qual a água
começa a esguichar, descrevendo uma curva parabólica. Ele percebeu que a corrente de água desce um
metro medido na vertical nos dez primeiros metros de movimento horinzontal. Depois de 10 minutos, ele
retorna para analisar o esguichamento e percebe que há uma nova curva parabólica, em que a corrente de
água desce um metro medido na vertical nos primeiros cinco metros de movimento horizontal. Qual foi a
velocidade de recuo do esguichamento da água em relação ao solo?

Os raios dos cilindros são respectivamente 10 cm e 40 cm. Se um bloco de 800 kg é colocado sobre o cilindro de maior raio, que força F deve ser aplicada sobre o cilindro de menor raio para manter o bloco de 800 kg em equilíbrio?



Podemos afirmar que o líquido sobe pelo corpo do pássaro quando a água do bico evapora, pois a
Qual alternativa apresenta uma mudança a ser feita no experimento para indicar um valor diferente do medido por Torricelli, conforme descrito no texto.

A figura precedente ilustra um compartimento cilíndrico com
base de área A e altura h contendo um fluido cuja densidade
varia continuamente com a profundidade z, de acordo com
uma função ρ(z). Considerando g a aceleração da gravidade,
assinale a opção que mostra a expressão correta do peso do
volume do fluido.