Questões de Concurso
Sobre leis de newton em física
Foram encontradas 387 questões
Uma partícula de massa m = 2 kg em repouso é submetida à uma força resultante unidimensional entre às posições inicial xi = 1 e final xf = 3m. A força é descrita por = em que k0 = 14 e k1 = 15, em unidades do sistema internacional.
A respeito dessa situação, julgue o item subsecutivo.
O módulo da velocidade da partícula na posição final xf é superior a 14 m/s.
Considerando a mecânica clássica newtoniana e as Leis de Newton, julgue o item a seguir.
A força peso e a força normal atuando em um corpo têm a
mesma intensidade, mas sentidos opostos, formando,
portanto, um par ação-reação.
Considerando a mecânica clássica newtoniana e as Leis de Newton, julgue o item a seguir.
Quando submetida a uma força resultante diferente de zero,
uma massa terá necessariamente o seu momento linear
variando no tempo.
A seguir, está representada a curva de uma mola que apresenta uma relação não linear entre força elástica e deformação. Até uma deformação de 0,2 m, o módulo da força elástica da mola pode ser descrito pela função F(x) = 0,5x – x², em que a força F é dada em newtons e a deformação, em metros. A essa mola foi acoplada uma massa M, de 100 gramas, que foi puxada a uma distância unidimensional de 0,2 m em relação à posição de repouso da mola. A massa foi solta e a mola impôs uma força elástica sobre a massa.
Considerando as informações apresentadas e a relação entre força e deformação, como apresentado no gráfico, julgue o item subsecutivo.
O trabalho exercido pela força elástica da posição de repouso
até a extensão de 0,2 m é inferior a 0,2 J.
A seguir, está representada a curva de uma mola que apresenta uma relação não linear entre força elástica e deformação. Até uma deformação de 0,2 m, o módulo da força elástica da mola pode ser descrito pela função F(x) = 0,5x – x², em que a força F é dada em newtons e a deformação, em metros. A essa mola foi acoplada uma massa M, de 100 gramas, que foi puxada a uma distância unidimensional de 0,2 m em relação à posição de repouso da mola. A massa foi solta e a mola impôs uma força elástica sobre a massa.
Considerando as informações apresentadas e a relação entre força e deformação, como apresentado no gráfico, julgue o item subsecutivo.
Quando a mola está deformada a 0,1 m, o valor da constante
elástica é duas vezes menor que o valor dessa constante
quando a mola está submetida a 0,15 m de deformação.
A seguir, está representada a curva de uma mola que apresenta uma relação não linear entre força elástica e deformação. Até uma deformação de 0,2 m, o módulo da força elástica da mola pode ser descrito pela função F(x) = 0,5x – x², em que a força F é dada em newtons e a deformação, em metros. A essa mola foi acoplada uma massa M, de 100 gramas, que foi puxada a uma distância unidimensional de 0,2 m em relação à posição de repouso da mola. A massa foi solta e a mola impôs uma força elástica sobre a massa.
Considerando as informações apresentadas e a relação entre força e deformação, como apresentado no gráfico, julgue o item subsecutivo.
A aceleração atingida pela massa em x = 0,2 m é maior que
1 m/s².
Na sua física, o filósofo grego Aristóteles tratou da realidade última de que são feitos os corpos materiais e a natureza das causas das mudanças neles observáveis. Aristóteles desenvolveu a ideia de causa final ou teleológica, que ele acreditava ser a explicação determinante de todos os fenômenos. Segundo ele, não há movimento sem força. Por exemplo, se você empurrar um livro sobre uma mesa, perceberá que ele só se movimenta enquanto você estiver exercendo uma força sobre ele; após cessar essa força, o livro irá parar. Mais tarde, Galileu apresentou argumentos que levaram à formulação da lei da inércia. As conclusões de Galileu são sintetizadas assim: se um corpo estiver em repouso, é necessária a ação de uma força sobre ele para colocá-lo em movimento. Uma vez iniciado o movimento, cessando a ação das forças, o corpo continuará a se mover indefinidamente em linha reta, com velocidade constante.
Internet: <www.if.ufrgs.br>
Com relação à evolução das ideias da física e às origens da mecânica, como apresentado no texto precedente, julgue o item a seguir.
A formalização de Newton permite o entendimento de que
uma variação da massa inercial no tempo, com uma
velocidade relativa entre massas, pode produzir uma
aceleração nas partes envolvidas.
Na sua física, o filósofo grego Aristóteles tratou da realidade última de que são feitos os corpos materiais e a natureza das causas das mudanças neles observáveis. Aristóteles desenvolveu a ideia de causa final ou teleológica, que ele acreditava ser a explicação determinante de todos os fenômenos. Segundo ele, não há movimento sem força. Por exemplo, se você empurrar um livro sobre uma mesa, perceberá que ele só se movimenta enquanto você estiver exercendo uma força sobre ele; após cessar essa força, o livro irá parar. Mais tarde, Galileu apresentou argumentos que levaram à formulação da lei da inércia. As conclusões de Galileu são sintetizadas assim: se um corpo estiver em repouso, é necessária a ação de uma força sobre ele para colocá-lo em movimento. Uma vez iniciado o movimento, cessando a ação das forças, o corpo continuará a se mover indefinidamente em linha reta, com velocidade constante.
Internet: <www.if.ufrgs.br>
Com relação à evolução das ideias da física e às origens da mecânica, como apresentado no texto precedente, julgue o item a seguir.
A sintetização das conclusões de Galileu, como apresentado
no texto, é válida para referenciais não inerciais.
São dados os coeficientes de atrito entre o bloco e a superfície: Dinâmico: μD = 0,10 Estático: μE = 0,30 Usar g = 10 m/s2
Com base nesses dados, a força de atrito atuante entre o blocoe a superfície sobre a qual ele está apoiado é de
(Considerar g = 10 m/s2 e massa específica do ar 1,2 kg/m3)
O texto a seguir é referência para a questão.
Na questão, as medições são feitas por um referencial inercial.
O módulo da aceleração gravitacional é representado por g. Onde for necessário, use g = 10 m/s² para o módulo da aceleração gravitacional.
Um objeto de massa m está em repouso a uma altura H acima da superfície da Terra. Sujeito à força gravitacional, num
dado momento, ele cai verticalmente em direção à Terra. Desprezando qualquer força dissipativa e considerando que
a aceleração gravitacional se mantém constante durante todo o movimento, assinale a alternativa que apresenta
corretamente o valor do módulo da velocidade v do objeto quando ele está a uma altura H/2 acima da superfície da Terra.
O texto a seguir é referência para a questão.
Na questão, as medições são feitas por um referencial inercial.
O módulo da aceleração gravitacional é representado por g. Onde for necessário, use g = 10 m/s² para o módulo da aceleração gravitacional.
Um objeto de massa m = 400 g é colocado sobre uma plataforma horizontal de área A = 5 cm². O sistema assim formado
está em equilíbrio estático. Considerando apenas a força exercida pelo objeto sobre a plataforma, assinale a alternativa
que apresenta corretamente o valor da pressão P exercida sobre a plataforma.
Com referência a essa situação hipotética, à mecânica clássica e a áreas a ela correlatas, julgue o item que se segue.
Como não há atrito entre o bloco de madeira e a mesa
horizontal, a conservação da energia mecânica garante que o
valor da energia cinética do sistema imediatamente antes da
colisão seja igual ao valor da energia cinética do sistema
imediatamente após a colisão.
Com referência a essa situação hipotética, à mecânica clássica e a áreas a ela correlatas, julgue o item que se segue.
Na posição de compressão máxima, a energia potencial
elástica armazenada na mola tem valor menor que o da
energia cinética do projétil antes da colisão.
A figura precedente ilustra dois blocos que estão conectados por um cabo sem massa. A superfície horizontal não tem atrito. Se a massa do bloco suspenso é m1 = 2 kg, então a aceleração do sistema terá um módulo de 4 m/s² quando a massa de m2 for igual a
Acerca dessa situação, julgue os seguintes itens, considerando a aceleração local da gravidade de 10 N/kg.
I De acordo com a lei de Hooke, a constante da mola tem valor inferior a 50 N.
II A tensão da mola é igual a 2,4 N.
III O peso do corpo é de 5 N.
Assinale a opção correta.
Um projétil de massa igual a 100 g penetra em um material e a sua posição, em função do tempo, dentro do material é descrita pelo vetor , em que são vetores unitários que apontam nas direções positivas de x, y e z, respectivamente, e t é o tempo medido a partir do instante em que o projétil penetra no material, medido em milissegundos (ms). Considerando essas informações e que seja medido em metros, julgue o item a seguir.
O material sofre uma força cujo valor máximo é inferior a 2 × 104 N na direção de , mas em sentido contrário.