Questões de Concurso Público TJ-DFT 2022 para Analista Judiciário - Segurança da Informação

Foram encontradas 60 questões

Q1924868 Português
“Justiça é consciência, não uma consciência pessoal, mas a consciência de toda a humanidade. Aqueles que reconhecem claramente a voz de suas próprias consciências normalmente reconhecem também a voz da justiça.” (Alexander Solzhenitsyn) A afirmação que está de acordo com a estruturação e a significação desse pensamento é:
Alternativas
Q1924869 Português
“Quando se julga por indução e sem o necessário conhecimento dos fatos, às vezes chega-se a ser injusto até mesmo com os malfeitores.” O raciocínio abaixo que deve ser considerado como indutivo é:
Alternativas
Q1924870 Português
“Todos aqueles que devem deliberar sobre quaisquer questões devem manter-se imunes ao ódio e à simpatia, à ira e ao sentimentalismo.” Tratando-se de um pensamento dirigido àqueles que julgam, o seu autor recomenda que eles:
Alternativas
Q1924872 Português

“A arte de interrogar não é tão fácil como se pensa. É mais uma arte de mestres do que discípulos; é preciso já ter aprendido muitas coisas para saber perguntar o que não se sabe.”

A frase abaixo que mostra uma interrogação, ainda que indireta, é:

Alternativas
Q1924874 Português
“Não há nada que demonstre tão bem a grandeza e a potência da inteligência humana, nem a superioridade e a nobreza do homem, como o fato de ele poder conhecer, compreender por completo e sentir fortemente a sua pequenez.” Os termos desse pensamento mostram paralelismo perfeito nos seguintes segmentos:
Alternativas
Q1924875 Português
“A liberdade, como a vida, só a merece quem deve conquistá-la a cada dia!” Essa frase exemplifica um caso de linguagem figurada que é um(a):
Alternativas
Q1924878 Inglês
Here’s why we’ll never be able to build a brain in a computer

It’s easy to equate brains and computers – they’re both thinking machines, after all. But the comparison doesn’t really stand up to closer inspection, as Dr. Lisa Feldman Barrett reveals.

People often describe the brain as a computer, as if neurons are like hardware and the mind is software. But this metaphor is deeply flawed.

A computer is built from static parts, whereas your brain constantly rewires itself as you age and learn. A computer stores information in files that are retrieved exactly, but brains don’t store information in any literal sense. Your memory is a constant construction of electrical pulses and swirling chemicals, and the same remembrance can be reassembled in different ways at different times.

Brains also do something critical that computers today can’t. A computer can be trained with thousands of photographs to recognise a dandelion as a plant with green leaves and yellow petals. You, however, can look at a dandelion and understand that in different situations it belongs to different categories. A dandelion in your vegetable garden is a weed, but in a bouquet from your child it’s a delightful flower. A dandelion in a salad is food, but people also consume dandelions as herbal medicine.

In other words, your brain effortlessly categorises objects by their function, not just their physical form. Some scientists believe that this incredible ability of the brain, called ad hoc category construction, may be fundamental to the way brains work.

Also, unlike a computer, your brain isn’t a bunch of parts in an empty case. Your brain inhabits a body, a complex web of systems that include over 600 muscles in motion, internal organs, a heart that pumps 7,500 litres of blood per day, and dozens of hormones and other chemicals, all of which must be coordinated, continually, to digest food, excrete waste, provide energy and fight illness.[…]

If we want a computer that thinks, feels, sees or acts like us, it must regulate a body – or something like a body – with a complex collection of systems that it must keep in balance to continue operating, and with sensations to keep that regulation in check. Today’s computers don’t work this way, but perhaps some engineers can come up with something that’s enough like a body to provide this necessary ingredient.

For now, ‘brain as computer’ remains just a metaphor. Metaphors can be wonderful for explaining complex topics in simple terms, but they fail when people treat the metaphor as an explanation. Metaphors provide the illusion of knowledge.

(Adapted from https://www.sciencefocus.com/future-technology/canwe-build-brain-computer/ Published: 24th October, 2021, retrieved on February 9th, 2022)
The title of the text implies that the author will:
Alternativas
Q1924879 Inglês
Here’s why we’ll never be able to build a brain in a computer

It’s easy to equate brains and computers – they’re both thinking machines, after all. But the comparison doesn’t really stand up to closer inspection, as Dr. Lisa Feldman Barrett reveals.

People often describe the brain as a computer, as if neurons are like hardware and the mind is software. But this metaphor is deeply flawed.

A computer is built from static parts, whereas your brain constantly rewires itself as you age and learn. A computer stores information in files that are retrieved exactly, but brains don’t store information in any literal sense. Your memory is a constant construction of electrical pulses and swirling chemicals, and the same remembrance can be reassembled in different ways at different times.

Brains also do something critical that computers today can’t. A computer can be trained with thousands of photographs to recognise a dandelion as a plant with green leaves and yellow petals. You, however, can look at a dandelion and understand that in different situations it belongs to different categories. A dandelion in your vegetable garden is a weed, but in a bouquet from your child it’s a delightful flower. A dandelion in a salad is food, but people also consume dandelions as herbal medicine.

In other words, your brain effortlessly categorises objects by their function, not just their physical form. Some scientists believe that this incredible ability of the brain, called ad hoc category construction, may be fundamental to the way brains work.

Also, unlike a computer, your brain isn’t a bunch of parts in an empty case. Your brain inhabits a body, a complex web of systems that include over 600 muscles in motion, internal organs, a heart that pumps 7,500 litres of blood per day, and dozens of hormones and other chemicals, all of which must be coordinated, continually, to digest food, excrete waste, provide energy and fight illness.[…]

If we want a computer that thinks, feels, sees or acts like us, it must regulate a body – or something like a body – with a complex collection of systems that it must keep in balance to continue operating, and with sensations to keep that regulation in check. Today’s computers don’t work this way, but perhaps some engineers can come up with something that’s enough like a body to provide this necessary ingredient.

For now, ‘brain as computer’ remains just a metaphor. Metaphors can be wonderful for explaining complex topics in simple terms, but they fail when people treat the metaphor as an explanation. Metaphors provide the illusion of knowledge.

(Adapted from https://www.sciencefocus.com/future-technology/canwe-build-brain-computer/ Published: 24th October, 2021, retrieved on February 9th, 2022)
Based on the text, mark the statements below as TRUE (T) or FALSE (F).
( ) Unlike a computer, it is hard for our brain to classify objects according to a specific purpose.
( ) The author rules out the possibility that computers may emulate the human brain someday.
( ) The brain adapts as one both matures and becomes more knowledgeable.

The statements are, respectively: 
Alternativas
Q1924880 Inglês
Here’s why we’ll never be able to build a brain in a computer

It’s easy to equate brains and computers – they’re both thinking machines, after all. But the comparison doesn’t really stand up to closer inspection, as Dr. Lisa Feldman Barrett reveals.

People often describe the brain as a computer, as if neurons are like hardware and the mind is software. But this metaphor is deeply flawed.

A computer is built from static parts, whereas your brain constantly rewires itself as you age and learn. A computer stores information in files that are retrieved exactly, but brains don’t store information in any literal sense. Your memory is a constant construction of electrical pulses and swirling chemicals, and the same remembrance can be reassembled in different ways at different times.

Brains also do something critical that computers today can’t. A computer can be trained with thousands of photographs to recognise a dandelion as a plant with green leaves and yellow petals. You, however, can look at a dandelion and understand that in different situations it belongs to different categories. A dandelion in your vegetable garden is a weed, but in a bouquet from your child it’s a delightful flower. A dandelion in a salad is food, but people also consume dandelions as herbal medicine.

In other words, your brain effortlessly categorises objects by their function, not just their physical form. Some scientists believe that this incredible ability of the brain, called ad hoc category construction, may be fundamental to the way brains work.

Also, unlike a computer, your brain isn’t a bunch of parts in an empty case. Your brain inhabits a body, a complex web of systems that include over 600 muscles in motion, internal organs, a heart that pumps 7,500 litres of blood per day, and dozens of hormones and other chemicals, all of which must be coordinated, continually, to digest food, excrete waste, provide energy and fight illness.[…]

If we want a computer that thinks, feels, sees or acts like us, it must regulate a body – or something like a body – with a complex collection of systems that it must keep in balance to continue operating, and with sensations to keep that regulation in check. Today’s computers don’t work this way, but perhaps some engineers can come up with something that’s enough like a body to provide this necessary ingredient.

For now, ‘brain as computer’ remains just a metaphor. Metaphors can be wonderful for explaining complex topics in simple terms, but they fail when people treat the metaphor as an explanation. Metaphors provide the illusion of knowledge.

(Adapted from https://www.sciencefocus.com/future-technology/canwe-build-brain-computer/ Published: 24th October, 2021, retrieved on February 9th, 2022)
According to the author, explaining the brain as a computer is:
Alternativas
Q1924881 Inglês
Here’s why we’ll never be able to build a brain in a computer

It’s easy to equate brains and computers – they’re both thinking machines, after all. But the comparison doesn’t really stand up to closer inspection, as Dr. Lisa Feldman Barrett reveals.

People often describe the brain as a computer, as if neurons are like hardware and the mind is software. But this metaphor is deeply flawed.

A computer is built from static parts, whereas your brain constantly rewires itself as you age and learn. A computer stores information in files that are retrieved exactly, but brains don’t store information in any literal sense. Your memory is a constant construction of electrical pulses and swirling chemicals, and the same remembrance can be reassembled in different ways at different times.

Brains also do something critical that computers today can’t. A computer can be trained with thousands of photographs to recognise a dandelion as a plant with green leaves and yellow petals. You, however, can look at a dandelion and understand that in different situations it belongs to different categories. A dandelion in your vegetable garden is a weed, but in a bouquet from your child it’s a delightful flower. A dandelion in a salad is food, but people also consume dandelions as herbal medicine.

In other words, your brain effortlessly categorises objects by their function, not just their physical form. Some scientists believe that this incredible ability of the brain, called ad hoc category construction, may be fundamental to the way brains work.

Also, unlike a computer, your brain isn’t a bunch of parts in an empty case. Your brain inhabits a body, a complex web of systems that include over 600 muscles in motion, internal organs, a heart that pumps 7,500 litres of blood per day, and dozens of hormones and other chemicals, all of which must be coordinated, continually, to digest food, excrete waste, provide energy and fight illness.[…]

If we want a computer that thinks, feels, sees or acts like us, it must regulate a body – or something like a body – with a complex collection of systems that it must keep in balance to continue operating, and with sensations to keep that regulation in check. Today’s computers don’t work this way, but perhaps some engineers can come up with something that’s enough like a body to provide this necessary ingredient.

For now, ‘brain as computer’ remains just a metaphor. Metaphors can be wonderful for explaining complex topics in simple terms, but they fail when people treat the metaphor as an explanation. Metaphors provide the illusion of knowledge.

(Adapted from https://www.sciencefocus.com/future-technology/canwe-build-brain-computer/ Published: 24th October, 2021, retrieved on February 9th, 2022)
“Whereas” in “A computer is built from static parts, whereas your brain constantly rewires itself as you age and learn” introduces a(n): 
Alternativas
Q1924882 Inglês
Here’s why we’ll never be able to build a brain in a computer

It’s easy to equate brains and computers – they’re both thinking machines, after all. But the comparison doesn’t really stand up to closer inspection, as Dr. Lisa Feldman Barrett reveals.

People often describe the brain as a computer, as if neurons are like hardware and the mind is software. But this metaphor is deeply flawed.

A computer is built from static parts, whereas your brain constantly rewires itself as you age and learn. A computer stores information in files that are retrieved exactly, but brains don’t store information in any literal sense. Your memory is a constant construction of electrical pulses and swirling chemicals, and the same remembrance can be reassembled in different ways at different times.

Brains also do something critical that computers today can’t. A computer can be trained with thousands of photographs to recognise a dandelion as a plant with green leaves and yellow petals. You, however, can look at a dandelion and understand that in different situations it belongs to different categories. A dandelion in your vegetable garden is a weed, but in a bouquet from your child it’s a delightful flower. A dandelion in a salad is food, but people also consume dandelions as herbal medicine.

In other words, your brain effortlessly categorises objects by their function, not just their physical form. Some scientists believe that this incredible ability of the brain, called ad hoc category construction, may be fundamental to the way brains work.

Also, unlike a computer, your brain isn’t a bunch of parts in an empty case. Your brain inhabits a body, a complex web of systems that include over 600 muscles in motion, internal organs, a heart that pumps 7,500 litres of blood per day, and dozens of hormones and other chemicals, all of which must be coordinated, continually, to digest food, excrete waste, provide energy and fight illness.[…]

If we want a computer that thinks, feels, sees or acts like us, it must regulate a body – or something like a body – with a complex collection of systems that it must keep in balance to continue operating, and with sensations to keep that regulation in check. Today’s computers don’t work this way, but perhaps some engineers can come up with something that’s enough like a body to provide this necessary ingredient.

For now, ‘brain as computer’ remains just a metaphor. Metaphors can be wonderful for explaining complex topics in simple terms, but they fail when people treat the metaphor as an explanation. Metaphors provide the illusion of knowledge.

(Adapted from https://www.sciencefocus.com/future-technology/canwe-build-brain-computer/ Published: 24th October, 2021, retrieved on February 9th, 2022)
The passage in which the verb phrase indicates a necessity is:
Alternativas
Q1924883 Direito Administrativo
O prefeito do Município Alfa decidiu promover uma ampla reestruturação da Administração pública indireta. Para tanto, decidiu que fosse elaborado um estudo preliminar, de modo a delinear os contornos gerais de: (1) duas entidades com personalidade jurídica própria, para a execução dos serviços públicos de limpeza urbana e de administração de cemitérios públicos; e (2) de órgãos específicos, a serem criados no âmbito da Secretaria de Saúde e da Secretaria de Ordem Pública, de modo a aumentar a especialização e, consequentemente, o nível de eficiência estatal. É correto afirmar que:
Alternativas
Q1924884 Direito Administrativo
Maria, servidora pública federal, foi aposentada por incapacidade permanente. Após algum tempo, junta médica oficial declarou insubsistentes os motivos da aposentadoria. Como Maria estava plenamente apta ao exercício das funções que sempre desempenhou, deve ocorrer o(a) seu/sua:
Alternativas
Q1924885 Direito Civil
Joana, jovem e renomada escritora de livros infantis, faleceu. O mais velho dos seus herdeiros, com 18 anos de idade, preocupado com a situação dos livros, que geravam uma elevada renda para Joana, questionou um advogado a respeito da proteção constitucional oferecida a direitos dessa natureza. O advogado respondeu, corretamente, que o direito de utilização, publicação ou reprodução das obras de Joana pertence:
Alternativas
Q1924886 Direito Constitucional
A Lei federal nº XX impôs a todos os cidadãos determinada obrigação de caráter cívico, a ser cumprida em certos períodos por aqueles que fossem sorteados. João, em razão de suas convicções políticas, decidiu que não iria cumprir a obrigação. À luz da sistemática constitucional, João:
Alternativas
Q1924887 Direito Administrativo
Após grande mobilização dos servidores públicos do Estado Alfa, foi promulgada a Lei estadual nº XX. De acordo com esse diploma normativo, os servidores públicos, titulares de cargos de provimento efetivo, que ocupassem cargos em comissão por um período mínimo de oito anos consecutivos, fariam jus à incorporação do respectivo valor à remuneração do cargo efetivo. Irresignado com o teor da Lei estadual nº XX, o governador do Estado solicitou que fosse analisada a sua compatibilidade com a ordem constitucional, concluindo-se, corretamente, que esse diploma normativo é:
Alternativas
Q1924888 Direito Administrativo
João, servidor público federal ocupante de cargo efetivo, no exercício das funções, opôs resistência injustificada ao andamento de documento e processo. De acordo com o regime jurídico disciplinar da Lei nº 8.112/1990, que lhe é aplicável, observadas as cautelas procedimentais legais, em tese, João, que até então nunca havia praticado qualquer infração funcional, está sujeito à sanção de:
Alternativas
Q1924891 Legislação dos Tribunais de Justiça (TJs)
A Lei nº 11.697/2008, que dispõe sobre a Organização Judiciária do Distrito Federal e dos Territórios, estabelece que aos juízes de direito cabe, além de processar e julgar os feitos de sua competência:
Alternativas
Q1924893 Redes de Computadores
O Tribunal de Justiça contratou a empresa Rede X para efetuar a troca dos cabos coaxiais antigos usados no tráfego de rede. A Rede X informou que conseguiria entregar a velocidade de 1 Gigabit por segundo (Gbps) com menor custo utilizando cabos que transmitem a partir da diferença de potencial elétrico e possuem boa imunidade a ruído com um bom desempenho. Para entregar o serviço, a empresa fará uso de cabo: 
Alternativas
Q1924894 Redes de Computadores
A divisão de conectividade está implementando um novo segmento de rede local para um novo departamento que está sendo criado no Tribunal de Justiça. Durante esse processo foi alocado o endereço 10.9.80.0/20 para a rede do novo departamento. Para que a divisão de conectividade termine sua tarefa, os endereços do último host válido e seu endereço de broadcast são, respectivamente: 
Alternativas
Respostas
1: D
2: E
3: B
4: C
5: C
6: A
7: C
8: D
9: A
10: B
11: E
12: C
13: E
14: B
15: C
16: A
17: A
18: D
19: E
20: C