Questões de Vestibular
Comentadas sobre dinâmica em física
Foram encontradas 221 questões
Um corpo, inicialmente em repouso sobre um piso horizontal, sofre a ação de duas forças horizontais, colineares e de sentidos opostos, F1 e F2 , de módulos iguais a 40 N e 20 N, respectivamente.
Após um deslocamento D = 3,0 m, no sentido de F1
, como
mostrado na figura, calcule, em joules, a variação da energia cinética do corpo. Despreze quaisquer atritos.
Três corpos, 1, 2 e 3, de massas m1 = 10 kg, m2 = 15 kg e m3 = 25 kg, se movem horizontalmente sobre um trilho no eixo infinito x, sem nenhuma resistência ou atrito, com velocidades iniciais v1 = 4,0 m/s, v2 = -2,0 m/s e v3 = 0,0 m/s, respectivamente. A distância inicial entre os blocos 1 e 2 é 1,0 m e entre os blocos 2 e 3 é 2,0m, como mostrado na figura. Os corpos 1 e 2 sofrem uma colisão completamente inelástica, ou seja, eles grudam um no outro após colidir. Esse conjunto então colide elasticamente com o corpo 3.
Calcule o módulo da velocidade do corpo 3, em m/s, após 153 s a partir do instante inicial.
Seja o sistema mostrado na figura. A caixa 2, de massa m2 = 2,0 kg, está descendo com velocidade constante e igual a 1,5 m/s. O coeficiente de atrito cinético entre a caixa 1 e a mesa que a sustenta é 0,4.
Qual é a massa da caixa 1, em kg?
Dado
aceleração da gravidade g = 10 m/s²
Pedro, ao se encontrar com João no elevador, inicia uma conversa, conforme a charge a seguir.
Disponível em: <https://pbs.twimg.com/media/DsFho_cWoAElwkl.jpg>. Acesso em: 05abr.2019. (Adaptado).
De acordo com as informações da charge, verifica-se que João

É correto afirmar que a energia mecânica do automóvel nos trechos AB, CD e EF, respectivamente,
Considere: sen37° = 0,60; cos37° = 0,80 ; sen27° = 0,45 ; cos27° = 0,90 ; g = 10 m/s².


Sendo EINICIAL e EFINAL, respectivamente, a soma das energias cinéticas dos automóveis imediatamente antes e imediatamente depois da colisão, e QINICIAL e QFINAL, respectivamente, a soma dos módulos das quantidades de movimento dos automóveis imediatamente antes e imediatamente depois da colisão, pode-se afirmar que:

A máxima aceleração que a pessoa pode imprimir ao objeto durante a subida, sem que a corda se rompa, é

Desprezando todos os atritos, o comprimento natural da mola (L0 ) é


A figura mostra uma esfera, de 250 g, em repouso, apoiada sobre uma mola ideal comprimida. Ao ser liberada, a mola transfere 50 J à esfera, que inicia, a partir do repouso e da altura indicada na figura, um movimento vertical para cima.
Desprezando-se a resistência do ar e adotando-se g=10 m/s2
,
a máxima altura que a esfera alcança, em relação à altura de
sua partida, é
Um bloco de massa m = 4 kg é mantido em repouso, preso a uma corda de densidade linear de massa µ = 4 × 10–3 kg/m, que tem sua outra extremidade fixa no ponto A de uma parede vertical. Essa corda passa por uma roldana ideal presa em uma barra fixa na parede, formando um ângulo de 60º com a barra. Considere que um diapasão seja colocado para vibrar próximo desse sistema e que ondas estacionárias se estabeleçam no trecho AB da corda.
Sabendo que a velocidade de propagação de uma onda por
uma corda de densidade linear de massa μ, submetida a uma força de tração T, é dada por v = , que g = 10 m/s2
, que
cos 60º = sen 30º = 0,5 e considerando as informações da
figura, pode-se afirmar que a frequência fundamental de ondas estacionárias no trecho AB da corda é
Para provocar a transformação gasosa ABC, representada no diagrama P × V, em determinada massa constante de gás ideal, foi necessário fornecer-lhe 1400 J de energia em forma de calor, dos quais 300 J transformaram-se em energia
Considerando não ter havido perda de energia, o trabalho
realizado pelas forças exercidas pelo gás no trecho AB dessa
transformação foi de
A figura mostra a visão superior de um carro, de massa 1200 kg, trafegando por uma pista horizontal e fazendo uma curva segundo a trajetória indicada. O trecho contido entre os pontos A e B é um arco de circunferência de raio R = 100 m e centro C.
Considerando que o trecho AB da trajetória é percorrido pelo
carro em 5 s com velocidade escalar constante e que π = 3,
a força de atrito que mantém esse carro na curva, nesse trecho, tem intensidade

O percurso correto é o



