Questões de Vestibular Sobre física

Foram encontradas 6.432 questões

Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107600 Física



Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .

Com base nessas informações, julgue o item.

Se o trem sobe com uma velocidade constante, a tensão de maior intensidade é a tensão T1, devido ao peso da caixa sobre o último vagão. 


Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107599 Física



Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .

Com base nessas informações, julgue o item.

Se o trem subir com uma aceleração a > 6m ⁄ s2 , a caixa no teto do último vagão deslizará e cairá do vagão. 
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107598 Física



Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .

Com base nessas informações, julgue o item.

Considere que o trem suba a uma velocidade constante e que a caixa apoiada no teto do último vagão pese 5 toneladas. Nessa hipótese, a caixa deslizará.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107597 Física



Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .

Com base nessas informações, julgue o item.

As tensões Ti e Ti+1 de cabos sucessivos do trem formam pares de ação e reação, obedecendo à terceira lei de Newton.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107596 Física



Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .

Com base nessas informações, julgue o item.


Para o trem subir a uma velocidade constante, a intensidade da força de tração da máquina deve ser Imagem associada para resolução da questão  = 5,05 x 105 N.


Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107588 Física
     Um sistema de IA permite que veículos autônomos se comuniquem, compartilhando informações acerca do trânsito, obstáculos e condições da estrada, o que melhora a eficiência do tráfego e reduz congestionamentos e acidentes. A seguir, são descritas duas situações que exemplificam aplicações de IA em veículos autônomos.


I Um sistema de IA utiliza o efeito Doppler para calcular a aproximação entre dois carros autônomos, A e B, que viajam no mesmo sentido em uma estrada reta. O carro A, que está à frente, move-se com velocidade constante vA, enquanto o carro B, que está atrás, move-se a 100 km/h. Ambos têm potência útil de 100 kW e emitem ondas sonoras de 500 Hz para detectar obstáculos. Em determinado instante, a distância entre eles é de 200 m.


II Um sistema de IA determina rotas mais eficientes para um veículo autônomo, usando o princípio de mínima ação S, dado por S = ∑ii ⋅ Δti  , em que Δt é a variação no tempo e ℒ = T − V  é definido como a lagrangiana, sendo a energia cinética e V a energia potencial. Em um caso específico de um veículo que percorra uma rota composta por três segmentos discretos, considerado um intervalo de tempo Δ = 2 s para todos os segmentos, os valores da lagrangiana em cada segmento são iguais a ℒ1 = 5 kJ, ℒ2 = 3 kJ e ℒ3 = 7 kJ. 
Com base nas situações anteriormente descritas, julgue o item subsequente. 

Na situação I, se o carro A tiver uma velocidade de 50 km/h, então o sistema de IA do carro B tem 20 s para acionar os freios do carro a fim de evitar um acidente com o carro A. 
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107587 Física
     Um sistema de IA permite que veículos autônomos se comuniquem, compartilhando informações acerca do trânsito, obstáculos e condições da estrada, o que melhora a eficiência do tráfego e reduz congestionamentos e acidentes. A seguir, são descritas duas situações que exemplificam aplicações de IA em veículos autônomos.


I Um sistema de IA utiliza o efeito Doppler para calcular a aproximação entre dois carros autônomos, A e B, que viajam no mesmo sentido em uma estrada reta. O carro A, que está à frente, move-se com velocidade constante vA, enquanto o carro B, que está atrás, move-se a 100 km/h. Ambos têm potência útil de 100 kW e emitem ondas sonoras de 500 Hz para detectar obstáculos. Em determinado instante, a distância entre eles é de 200 m.


II Um sistema de IA determina rotas mais eficientes para um veículo autônomo, usando o princípio de mínima ação S, dado por S = ∑ii ⋅ Δti  , em que Δt é a variação no tempo e ℒ = T − V  é definido como a lagrangiana, sendo a energia cinética e V a energia potencial. Em um caso específico de um veículo que percorra uma rota composta por três segmentos discretos, considerado um intervalo de tempo Δ = 2 s para todos os segmentos, os valores da lagrangiana em cada segmento são iguais a ℒ1 = 5 kJ, ℒ2 = 3 kJ e ℒ3 = 7 kJ. 
Com base nas situações anteriormente descritas, julgue o item subsequente. 

Na situação II, a ação mínima calculada pelo sistema de IA é 30 kJ × s. 
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107586 Física
     Um sistema de IA permite que veículos autônomos se comuniquem, compartilhando informações acerca do trânsito, obstáculos e condições da estrada, o que melhora a eficiência do tráfego e reduz congestionamentos e acidentes. A seguir, são descritas duas situações que exemplificam aplicações de IA em veículos autônomos.


I Um sistema de IA utiliza o efeito Doppler para calcular a aproximação entre dois carros autônomos, A e B, que viajam no mesmo sentido em uma estrada reta. O carro A, que está à frente, move-se com velocidade constante vA, enquanto o carro B, que está atrás, move-se a 100 km/h. Ambos têm potência útil de 100 kW e emitem ondas sonoras de 500 Hz para detectar obstáculos. Em determinado instante, a distância entre eles é de 200 m.


II Um sistema de IA determina rotas mais eficientes para um veículo autônomo, usando o princípio de mínima ação S, dado por S = ∑ii ⋅ Δti  , em que Δt é a variação no tempo e ℒ = T − V  é definido como a lagrangiana, sendo a energia cinética e V a energia potencial. Em um caso específico de um veículo que percorra uma rota composta por três segmentos discretos, considerado um intervalo de tempo Δ = 2 s para todos os segmentos, os valores da lagrangiana em cada segmento são iguais a ℒ1 = 5 kJ, ℒ2 = 3 kJ e ℒ3 = 7 kJ. 
Com base nas situações anteriormente descritas, julgue o item subsequente. 

Na situação I, se o sistema de IA no carro B detectar uma onda refletida pelo carro A com 519,62 Hz, então VA = 50 km/h.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107585 Física
     Um sistema de IA permite que veículos autônomos se comuniquem, compartilhando informações acerca do trânsito, obstáculos e condições da estrada, o que melhora a eficiência do tráfego e reduz congestionamentos e acidentes. A seguir, são descritas duas situações que exemplificam aplicações de IA em veículos autônomos.


I Um sistema de IA utiliza o efeito Doppler para calcular a aproximação entre dois carros autônomos, A e B, que viajam no mesmo sentido em uma estrada reta. O carro A, que está à frente, move-se com velocidade constante vA, enquanto o carro B, que está atrás, move-se a 100 km/h. Ambos têm potência útil de 100 kW e emitem ondas sonoras de 500 Hz para detectar obstáculos. Em determinado instante, a distância entre eles é de 200 m.


II Um sistema de IA determina rotas mais eficientes para um veículo autônomo, usando o princípio de mínima ação S, dado por S = ∑ii ⋅ Δti  , em que Δt é a variação no tempo e ℒ = T − V  é definido como a lagrangiana, sendo a energia cinética e V a energia potencial. Em um caso específico de um veículo que percorra uma rota composta por três segmentos discretos, considerado um intervalo de tempo Δ = 2 s para todos os segmentos, os valores da lagrangiana em cada segmento são iguais a ℒ1 = 5 kJ, ℒ2 = 3 kJ e ℒ3 = 7 kJ. 
Com base nas situações anteriormente descritas, julgue o item subsequente. 

Considere que, na situação I, o carro A tenha motor a combustão, sendo-lhe necessária uma potência fornecida de 400 kW, enquanto o carro B tem motor elétrico, sendo-lhe necessária uma potência fornecida de 115 kW. Nesse caso, assumindo-se que a eficiência dos carros seja dada por  Imagem associada para resolução da questão   e considerando-se que ambos os carros tenham uma potência útil de 100 kW, infere-se que a eficiência do carro B é inferior a 3 vezes a eficiência do carro A.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107584 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

Se o campo magnético Imagem associada para resolução da questão tiver sentido contrário ao mostrado na figura, o feixe de elétrons atingirá a tela fluorescente em um ponto de coordenada com valor positivo de y. 
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107583 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

Quando o elétron sofre uma deflexão na região entre as placas que geram o campo elétrico Imagem associada para resolução da questão, a força magnética que atua sobre o elétron nessa região mantém sempre a mesma direção. 
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107582 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

Se a diferença de potencial V entre as placas que geram o campo elétrico for duplicada, a velocidade dos elétrons que atingem a fenda também será duplicada.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107581 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

Se Imagem associada para resolução da questão, o feixe de elétrons que atravessa a fenda não irá sofrer nenhuma deflexão até atingir a tela luminescente.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107580 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

A variação de energia cinética do elétron ao percorrer a distância d+ d+d3 até atingir a tela luminescente não dependerá da intensidade do campo magnético.  
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107579 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

Na ausência de campo elétrico Imagem associada para resolução da questão, os elétrons que atravessam a fenda irão descrever trajetórias parabólicas ao percorrerem a região que contém o campo magnético e irão atingir a tela luminescente em um ponto com coordenada y ∠ 0.
Alternativas
Ano: 2024 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2024 - UNB - Prova de Conhecimentos III - 2° dia |
Q3107578 Física

   


    Um sistema de IA foi desenvolvido com os princípios básicos de funcionamento de um tubo de raios catódicos, com base no experimento feito pelo físico inglês J. J. Thompson em 1887, cujo esquema simplificado é ilustrado na figura precedente. No experimento, um filamento aquecido emite elétrons, que são acelerados por uma diferença de potencial V e percorrem uma distância d1 até atingirem uma tela de anteparo que contém uma pequena fenda. Os elétrons que passam pela fenda atravessam a região de comprimento d2, onde existem campos elétrico e magnético, uniformes, constantes e perpendiculares entre si. Ao atravessar essa região, os elétrons são defletidos devido às forças elétrica e magnética que atuam sobre eles. Nessa região, o campo elétrico  é gerado por uma diferença de potencial aplicada entre placas paralelas (mostradas na figura), e o campo magnético  é gerado por um eletroímã (não mostrado na figura); a direção e o sentido desses campos são mostrados na figura. Finalmente, os elétrons atravessam uma região livre de forças até atingir uma tela fluorescente, que fica a uma distância d3 da região que contém os campos eletromagnéticos. Todo o aparato está contido em um recipiente de vidro, onde se faz vácuo. Na ausência dos campos elétrico e magnético, os elétrons atravessam a fenda em linha reta, na trajetória indicada pelo eixo x na figura. A posição em que o elétron atinge a tela fluorescente é indicada no eixo y. O ponto importante no desenvolvimento do sistema de IA é perceber que o desvio, para um tubo de raios catódicos, irá depender apenas das três variáveis 

A partir das informações precedentes e considerando que os elétrons, ao saírem do filamento, estão aproximadamente em repouso, julgue o item. 

Na ausência de campo magnético Imagem associada para resolução da questão, o tempo que o elétron leva para percorrer a distância d2 + d3 entre a fenda e a tela luminescente não dependerá da intensidade do campo elétrico Imagem associada para resolução da questão.
Alternativas
Ano: 2024 Banca: COMVEST - UNICAMP Órgão: UNICAMP Prova: COMVEST - UNICAMP - 2024 - UNICAMP - Vestibular |
Q3107197 Física
A energia solar desempenha papel substancial nas soluções energéticas de desenvolvimento sustentável: além de fazer uso de tecnologia pouco agressiva ao ambiente, é uma enorme fonte de energia renovável. 
A área de um painel solar que gera uma potência elétrica P = 462 W é A = 2,5 m2 . A intensidade da radiação solar que incide no painel, ou seja, a potência da radiação solar por unidade de área do painel, é Isolar = 924 W/m2 . Qual é a eficiência do painel solar, ou seja, qual é a razão entre a energia elétrica gerada e a energia solar que incide no painel num dado intervalo de tempo?
Alternativas
Ano: 2024 Banca: COMVEST - UNICAMP Órgão: UNICAMP Prova: COMVEST - UNICAMP - 2024 - UNICAMP - Vestibular |
Q3107196 Física
A energia solar desempenha papel substancial nas soluções energéticas de desenvolvimento sustentável: além de fazer uso de tecnologia pouco agressiva ao ambiente, é uma enorme fonte de energia renovável. 
Operando em condições ótimas, um painel solar gera energia elétrica numa potência P = 462 W, com uma diferença de potencial Upainel = 42 V nos seus terminais. Para que a energia gerada seja armazenada numa bateria de diferença de potencial Ubat = 12 V, usa-se um dispositivo que ajusta a diferença de potencial, dispositivo este chamado de controlador de carga (ver figura). Se, numa situação ideal, toda a energia gerada pelo painel é armazenada na bateria, quais os valores das correntes elétricas ipainel e ibat nos terminais do painel e da bateria, respectivamente?

Imagem associada para resolução da questão
Alternativas
Ano: 2024 Banca: COMVEST - UNICAMP Órgão: UNICAMP Prova: COMVEST - UNICAMP - 2024 - UNICAMP - Vestibular |
Q3107195 Física
Pesquisas recentes demonstraram que alguns compostos, como o ZnW2O8, apresentam coeficiente de dilatação térmica linear ( α ) negativo, diferentemente da maioria dos materiais, que se expandem com o aquecimento. O gráfico a seguir ilustra a variação, em função da temperatura, do comprimento L de uma barra dessa classe de materiais.

Imagem associada para resolução da questão

Considerando que o coeficiente de dilatação α seja aproximadamente constante no intervalo de temperatura entre 0o C e 50oC , pode-se dizer que o valor de α nesse intervalo é igual a 
Alternativas
Ano: 2024 Banca: COMVEST - UNICAMP Órgão: UNICAMP Prova: COMVEST - UNICAMP - 2024 - UNICAMP - Vestibular |
Q3107194 Física
O projeto internacional DUNE (Deep Underground Neutrino Experiment) é um gigantesco experimento idealizado para o estudo de neutrinos. Para a detecção da luz emitida quando os neutrinos atravessam enormes tanques de argônio líquido, foi projetado na Unicamp um dispositivo chamado Arapuca, cuja função é aumentar a área de coleta da luz, confinando- -a no interior de uma caixa que contém os sensores. Antes de entrar na Arapuca, a luz emitida, de comprimento de onda λ1 = 128 nm, incide num material que tem por finalidade modificar o comprimento de onda da radiação, de modo que, ao emergir desse material, o novo comprimento de onda da luz passe a ser λ2 = 350 nm. Considere que, nessa etapa do experimento, ambos os feixes luminosos de comprimentos de onda λ1 e λ2 propagam-se no mesmo meio. Sendo f1 a frequência e v1 a velocidade da luz no comprimento de onda λ1, e f2 a frequência e v2 a velocidade da luz no comprimento de onda λ2, pode-se afirmar que
Alternativas
Respostas
61: E
62: C
63: E
64: E
65: C
66: E
67: C
68: C
69: E
70: C
71: E
72: E
73: C
74: C
75: E
76: C
77: B
78: A
79: B
80: B