Questões Militares
Sobre física moderna em física
Foram encontradas 96 questões
FÍSICA
Nas questões de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3 /2
• cos 60º = sen 30º = 1 2
• calor específico da água: c = 1 cal/(g·ºC)
• calor latente de fusão do gelo: Lf = 80 cal/g
• temperatura de fusão do gelo: θf = 0 ºC
• densidade do gelo: µg = 0,92 g/cm3
• densidade da água: µA = 1,0 g/cm3
Para um referencial R’, em repouso em relação a esses mésons, tais partículas deveriam se desintegrar muito rapidamente após seu surgimento, durando apenas um intervalo de tempo ∆t’ e não deveriam ser detectadas na superfície da Terra. No entanto, são detectadas e em abundância! Esse “problema” só é compreendido sob a interpretação relativística do movimento dos mésons, já que eles se movem a altíssimas velocidades em relação à superfície da Terra.
Ao se observar o movimento de um méson μ, a partir da superfície da Terra, mede-se seu tempo de vida como sendo ∆t = 15,9 ∙ ∆t’. Considerando que, em relação à R’, esse méson percorre 660 m, então, para um observador na superfície da Terra, tal méson percorre, em m, uma distância igual a
Considere que um feixe de raios X com comprimento de onda 8,88 × 10–11 m incida sobre uma amostra de carbono e os fótons desse feixe, espalhados pelos elétrons livres da amostra, sejam observados a 60º da direção de incidência. Adotando h = 6,6 × 10–34 J · s para a constante de Planck, c = 3,0 × 108 m/s e m = 9,1 × 10–31 kg, a energia dos fótons dos raios X, após o espalhamento causado pela amostra de carbono, é
Um desses veículos tem as dimensões indicadas na figura e está se movendo em uma trajetória retilínea e horizontal com velocidade v = 0,8 × c, em que c é a velocidade da luz.
Devido aos efeitos relativísticos, um observador colocado fora do veículo e parado em relação à Terra observaria as dimensões A e B como A’ e B’ de tal forma que
As figuras a seguir ilustram, simplificadamente, o princípio de
funcionamento de um GPS: três satélites, posicionados a
distâncias R1, R2 e R3, emitem ondas eletromagnéticas que
comunicam a receptores situados na superfície da Terra suas
respectivas distâncias ao longo do tempo. Tais satélites perfazem
duas voltas por dia na Terra, enquanto satélites geoestacionários
demoram um dia para dar uma volta no nosso planeta.
A partir das informações e das figuras apresentadas, julgue o seguinte item.
A relatividade especial prevê a dilatação temporal quando há
movimento relativo entre dois corpos, por isso, do ponto de
vista de um observador na Terra, o relógio de um satélite
GPS fica adiantado em relação ao seu tempo próprio, devido
à alta velocidade do satélite.
Considerando o gráfico apresentado, julgue o item a seguir.
A vida-média do elemento em questão é menor que 18 dias.
O filamento aquecido libera elétrons (efeito termiônico) que são acelerados pela fonte de alta tensão e, em seguida, bombardeiam o alvo A, ocorrendo aí a produção dos raios X. Se a ddp na fonte de alta tensão for de 25 kV, o comprimento de onda mínimo, em Å, dos fótons de raios X será de, aproximadamente,
Dentre as alternativas a seguir, assinale aquela que, respectivamente, completa corretamente os espaços indicados pelo símbolo de interrogação (?) que representam duas etapas do decaimento do césio-137.
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
O ozônio (O3) é naturalmente destruído na estratosfera superior pela radiação proveniente do Sol.
Para cada molécula de ozônio que é destruída, um átomo de oxigênio (O) e uma molécula de oxigênio (O2) são formadas, conforme representado abaixo:
Sabendo-se que a energia de ligação entre o átomo de
oxigênio e a molécula O2 tem módulo igual a 3,75 eV, então
o comprimento de onda dos fótons da radiação necessária
para quebrar uma ligação do ozônio e formar uma molécula
O2 e um átomo de oxigênio vale, em nm,
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No interior do Sol, reações nucleares transformam quantidades enormes de núcleos de átomos de hidrogênio (H), que se combinam e produzem núcleos de átomos de hélio (He), liberando energia.
A cada segundo ocorrem 1038 reações de fusão onde quatro átomos de hidrogênio se fundem para formar um átomo de hélio, conforme esquematizado abaixo:
4H → He + Energia.
A energia liberada pelo Sol, a cada segundo, seria capaz de
manter acesas um certo número de lâmpadas de 100 W.
Nessas condições, a ordem de grandeza desse número de
lâmpadas é igual a
Está de acordo com a teoria quântica a seguinte relação:
Esse exoplaneta está a somente 16 anos-luz de distância da Terra, o que faz com que o sistema planetário da estrela Gliese 832c seja atualmente o sistema mais próximo da Terra que abriga um planeta que pode potencialmente suportar a vida. (https://spacetoday.com.br. Adaptado)
Considere que, em um futuro distante, seja possível uma viagem interplanetária até Gliese 832c. Admita que dois irmãos gêmeos univitelinos, João e José, vivem na Terra e que João precise fazer uma viagem interplanetária até esse exoplaneta, enquanto José permanece na Terra. Considere, também, que a espaçonave utilizada por João mantenha, na ida e na volta, uma velocidade constante v = 0,8 × c, em que c é a velocidade da luz, no vácuo.
Adote, nesse caso, o fator de Lorentz , desconsidere os intervalos de tempo de aceleração e desaceleração da espaçonave e o intervalo de tempo de permanência de João no exoplaneta. Dessa forma, devido a efeitos relativísticos, quando João retornar à Terra, ele estará, em relação ao José,
Analise a figura abaixo.
Na figura acima, a linha pontilhada mostra a trajetória
plana de uma partícula de carga -q = -3,0 C que percorre
6,0 metros, ao se deslocar do ponto A, onde estava em
repouso, até o ponto B, onde foi conduzida novamente ao
repouso. Nessa região do espaço, há um campo elétrico
conservative, cujas superfícies equipotenciais estão
representadas na figura. Sabe-se que, ao longo desse
deslocamento da partícula, atuam somente duas forças
sobre ela, onde uma delas é a força externa, Fext. Sendo
assim, qual o trabalho, em quilojoules, realizado pela força
Fext no deslocamento da partícula do ponto A até o ponto
B?
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Analise as afirmativas abaixo, com relação aos princípios de Mecânica Quântica.
I - A função de onda de uma partícula permite calcular o valor esperado de qualquer grandeza observável.
II - O deslocamento Compton devido ao núcleo é muito maior que o devido ao elétron.
III- A corrente fotoelétrica é diretamente proporcional à frequência da luz incidente.
IV - A função trabalho é uma quantidade que depende apenas do metal considerado.
V - É possível medir simultaneamente, com precisão arbitrária, as três componentes do vetor posição de uma partícula.
Assinale a opção correta.
Analise a figura abaixo.
Um elétron com energia cinética de 1,000MeV colide com um pósitron em repouso. As duas partículas se aniquilam emitindo dois fótons, conforme a figura acima. Qual é a energia de cada fóton?
Dados: massa do elétron m = 9,109x10-31kg,
carga do elétron e = 1,602x10-19C,
velocidade da luz c = 2,998x108m / s .
Dado: energia de Rydberg Ry=13,6eV
O núcleo desse átomo é:
Um elétron, movendo-se sobre uma reta, tem sua função de onda dada por (x)= A e-|x|/a onde A e a são números reais com dimensão apropriada. O valor de A é :