Questões Militares
Sobre oscilação e ondas em física
Foram encontradas 376 questões
* Quando necessário, use g=10 m/s²,
sen 30° = cos 60° = 1/2 ,
sen 60° = cos 30° = √3/2 ,
sen 45° = cos 45° = √2/ 2 .
A figura abaixo representa a variação da intensidade luminosa I das franjas de interferência, em função da posição x, resultado da montagem experimental, conhecida como Experiência de Young.
A razão entre as distâncias é
Observe a figura abaixo.
O esquema acima representa ondas periódicas propagando-se ao longo de uma corda tensa. Nesse esquema, os pontos A e E distam 60cm um do outro e o instante mostrado foi obtido 5s após o início da vibração da fonte.
Considerando essa situação, pode-se dizer que o comprimento de onda (λ), a frequência (f) e a velocidade (v) dessa onda valem, respectivamente:
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Duas fontes sonoras 1 e 2, de massas desprezíveis, que emitem sons, respectivamente, de frequências f1 = 570 Hz e f2 = 390 Hz são colocadas em um sistema, em repouso, constituído por dois blocos, A e B, unidos por um fio ideal e inextensível, de tal forma que uma mola ideal se encontra comprimida entre eles, como mostra a figura abaixo.
A fonte sonora 1 está acoplada ao bloco A, de massa 2m, e a fonte sonora 2 ao bloco B, de massa m.
Um observador O, estacionário em relação ao solo, dispara um mecanismo que rompe o fio. Os blocos passam, então, a se mover, separados da mola, com velocidades constantes em relação ao solo, sendo que a velocidade do bloco B é de 80 m/s.
Considere que não existam forças dissipativas, que a
velocidade do som no local é constante e igual a 340 m/s,
que o ar se encontra em repouso em relação ao solo.
Nessas condições, a razão entre as frequências sonoras
percebidas pelo observador, devido ao movimento das
fontes 2 e 1, respectivamente, é
Na questão de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2
sen30° = 1/2;
cos30° =
Uma partícula de massa m pode ser colocada a oscilar em quatro experimentos diferentes, como mostra a Figura 1 abaixo.
Para apenas duas dessas situações, tem-se o registro do gráfico senoidal da posição da partícula em função do tempo, apresentado na Figura 2.
Considere que não existam forças dissipativas nos quatro experimentos; que, nos experimentos II e IV , as molas sejam ideais e que as massas oscilem em trajetórias perfeitamente retilíneas; que no experimento III o fio conectado à massa seja ideal e inextensível; e que nos experimentos I e III a massa descreva uma trajetória que é um arco de circunferência.
Nessas condições, os experimentos em que a partícula oscila certamente em movimento harmônico simples são, apenas
Um diapasão de frequência conhecida igual a 340 Hz é posto a vibrar continuamente próximo à boca de um tubo, de 1 m de comprimento, que possui em sua base um dispositivo que permite a entrada lenta e gradativa de água como mostra o desenho abaixo.
Quando a água no interior do tubo atinge uma determinada
altura h a partir da base, o som emitido pelo tubo é muito
reforçado. Considerando a velocidade do som no local de
340 m/s, a opção que melhor representa as ondas
estacionárias que se formam no interior do tubo no momento
do reforço é
Um instantâneo de uma corda, onde se estabeleceu uma onda estacionária, é apresentado na figura abaixo.
Nesta situação, considerada ideal, a energia associada aos pontos 1, 2 e 3 da corda é apenas potencial.
No instante igual a 3/4 de ciclo após a situação inicial acima,
a configuração que melhor representa a forma da corda e o
sentido das velocidades dos pontos 1, 2 e 3 é
O elétron do átomo de hidrogênio, ao passar do primeiro estado estacionário excitado, n = 2, para o estado fundamental, n = 1, emite um fóton.
Tendo em vista o diagrama da figura abaixo, que apresenta, de maneira aproximada, os comprimentos de onda das diversas radiações, componentes do espectro eletromagnético, pode-se concluir que o comprimento de onda desse fóton emitido corresponde a uma radiação na região do(s)
Ondas sonoras são produzidas por duas cordas A e B próximas, vibrando em seus modos fundamentais, de tal forma que se percebe x batimentos sonoros por segundo como resultado da superposição dessas ondas. As cordas possuem iguais comprimentos e densidades lineares sempre constantes, mas são submetidas a diferentes tensões.
Aumentando-se lentamente a tensão na corda A, chega-se a uma condição onde a frequência de batimento é nula e ouve-se apenas uma única onda sonora de frequência f.
Nessas condições, a razão entre a maior e a menor tensão na corda A é
A figura abaixo apresenta a configuração instantânea de uma onda plana longitudinal em um meio ideal. Nela, estão representadas apenas três superfícies de onda α, β e γ, separadas respectivamente por λ e λ/2, onde λ é o comprimento de onda da onda.
Em relação aos pontos que compõem essas superfícies de onda, pode-se fazer as seguintes afirmativas:
I - estão todos mutuamente em oposição de fase;
II - estão em fase os pontos das superfícies α e γ ;
III - estão em fase apenas os pontos das superfícies α e β;
IV - estão em oposição de fase apenas os pontos das superfícies γ e β.
Nessas condições, é (são) verdadeira(s)
A figura 1 abaixo apresenta a configuração de uma onda estacionária que se forma em uma corda inextensível de comprimento L e densidade linear µ quando esta é submetida a oscilações de frequência constante f0, através de uma fonte presa em uma de suas extremidades. A corda é tencionada por um corpo homogêneo e maciço de densidade ρ, preso na outra extremidade, que se encontra dentro de um recipiente inicialmente vazio.
Considere que o recipiente seja lentamente preenchido com um líquido homogêneo de densidade δ e que, no equilíbrio, o corpo M fique completamente submerso nesse líquido. Dessa forma, a nova configuração de onda estacionária que se estabelece na corda é mostrada na figura 2.
Nessas condições, a razão (ρ/δ) entre as densidades do corpo e do líquido, é
Uma fonte de luz monocromática ilumina um obstáculo, contendo duas fendas separadas por uma distância d, e produz em um anteparo distante D das fendas, tal que D >> d, uma configuração de interferência com franjas claras e escuras igualmente espaçadas, como mostra a figura abaixo.
Considere que a distância entre os centros geométricos de uma franja clara e da franja escura, adjacente a ela, seja x. Nessas condições, são feitas as seguintes afirmativas.
I - O comprimento de onda da luz monocromática que
ilumina o obstáculo é obtido como .
II - A distância entre o máximo central e o segundo máximo secundário é 3x .
III - A diferença de caminhos percorridos pela luz que
atravessa as fendas do anteparo e chegam no primeiro
mínimo de intensidade é dado por .
É (São) correta(s) apenas
Em um exercício conjunto envolvendo a Força Aérea, o Exército e a Marinha, foram realizadas transmissões de rádio (onda eletromagnética) entre controladores de tráfego em terra e dentro de submarinos. Sabendo que a antena do submarino funciona adequadamente para sinais de rádio com comprimentos de onda iguais a 2m e o índice de refração da água no local era igual a 1,5, assinale a alternativa que indica, corretamente, a freqüência, em MHz, que deve ser usada para que o sinal seja recebido pela antena submersa do submarino.
Dado: módulo da velocidade da luz no vácuo igual a 3×108 m /s .
Coloca-se uma fonte em um meio 1 e outra fonte em um outro meio 2. Os gráficos a seguir representam a amplitude (A) em função da posição (x) das ondas periódicas emitidas em cada um dos meios por essas fontes.
Com base na figura, podemos afirmar corretamente que a
relação entre o comprimento de onda no meio 1 ( λ1) e o
comprimento de onda no meio 2 ( λ2 ) é