Questões Militares Sobre física

Foram encontradas 3.904 questões

Q1780336 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Considere uma lente biconvexa feita de um material com índice de refração 1,2 e raios de curvatura de 5,0 cm e 2,0 cm. Ela é imersa dentro de uma piscina e utilizada para observar um objeto de 80 cm de altura, também submerso, que se encontra afastado a 1,0 m de distancia. Sendo o índice de refração da água igual a 1,3, considere as seguintes afirmativas:
I. A lente é convergente e a imagem é real. II. A lente ´e divergente e a imagem é virtual. III. A imagem está a 31 cm da lente e tem 25 cm de altura.
Considerando V como verdadeira e F como falsa, as afirmações I, II e III são, respectivamente,
Alternativas
Q1780335 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um violão é um instrumento sonoro de seis cordas de diferentes propriedades, fixas em ambas as extremidades, acompanhadas de uma caixa de ressonância. Diferentes notas musicais são produzidas tangendo uma das cordas, podendo-se ou não alterar o seu comprimento efetivo, pressionando-a com os dedos em diferentes pontos do braço do violão. A respeito da geração de sons por esse instrumento são feitas quatro afirmações:
I. Cordas mais finas, mantidas as demais propriedades constantes, são capazes de produzir notas mais agudas. II. O aumento de 1,00% na tensão aplicada sobre uma corda acarreta um aumento de 1,00% na frequência fundamental gerada. III. Uma corda de nylon e uma de aço, afinadas na mesma frequência fundamental, geram sons de timbres distintos. IV. Ao pressionar uma corda do violão, o musicista gera um som de frequência maior e comprimento de onda menor em comparação ao som produzido pela corda tocada livremente.

Considerando V como verdadeira e F como falsa, as afirmações I, II, III e IV são, respectivamente,
Alternativas
Q1780334 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um objeto de massa M, preso a uma mola ideal, realiza uma oscilação livre de frequência ƒEm um determinado instante, um segundo objeto de massa m é fixado ao primeiro. Verifica-se que o sistema tem sua frequência de oscilação reduzida de ∆ƒ, muito menor que ƒ. Sabendo que (1 + x)n ≈ 1 + nx, para |x| « 1, pode-se afirmar que ƒ é dada por
Alternativas
Q1780333 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um recipiente isolado é dividido em duas partes. A região A, com volume VA, contém um gás ideal a uma temperatura TA. Na região B, com volume VB = 2VA, faz-se vácuo. Ao abrir um pequeno orifício entre as regiões, o gás da região A começa a ocupar a região B. Considerando que não há troca de calor entre o gás e o recipiente, a temperatura de equilíbrio final do sistema é
Alternativas
Q1780332 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um recipiente, de secção de área constante e igual a A, é preenchido por uma coluna de líquido de densidade ρ e altura H. Sobre o líquido encontra-se um pistão de massa M, que pode se deslocar verticalmente livre de atrito. Um furo no recipiente é feito a uma altura h, de tal forma que um filete de água é expelido conforme mostra a figura. Assinale a alternativa que contém o alcance horizontal D do jato de água.
Imagem associada para resolução da questão
Alternativas
Q1780331 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Considere um sistema de três satélites idênticos de massa m dispostos nos vértices de um triângulo equilátero de lado d. Considerando somente o efeito gravitacional que cada um exerce sobre os demais, calcule a velocidade orbital dos satélites com respeito ao centro de massa do sistema para que a distância entre eles permaneça inalterada.
Alternativas
Q1780330 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Uma bola de gude de raio r e uma bola de basquete de raio R são lançadas contra uma parede com velocidade horizontal v e com seus centros a uma altura h. A bola de gude e a bola de basquete estão na iminência de contato entre si, assim como ambas contra a parede. Desprezando a duração de todas as colisões e quaisquer perdas de energia, calcule o deslocamento horizontal ∆S da bolinha de gude ao atingir o solo.
Imagem associada para resolução da questão
Alternativas
Q1780329 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

Um trem parte do repouso sobre uma linha horizontal e deve alcançar a velocidade de 72 km/h. Até atingir essa velocidade, o movimento do trem tem aceleração constante de 0,50 m/s2 , sendo que resistências passivas absorvem 5,0% da energia fornecida pela locomotiva. O esforço médio, em N, fornecido pela locomotiva para transportar uma carga de 1,0 ton é
Alternativas
Q1780328 Física

Quando precisar use os seguintes valores para as constantes:


Aceleração local da gravidade = 10 m/s2 .

Constante gravitacional universal G = 6,67×10−11 m3 .kg−1.s−2 .

Velocidade da luz no vácuo c = 3,0×108 m/s.

Constante de Planck reduzida h = 1,05×10−34 J.s.

Permeabilidade magnética do vácuo µ0 = 4π×10−7 N.A−2 .

Carga elétrica elementar e = 1,6×10−19C.

Massa do elétron m0 = 9,1×10−31 kg.

Constante eletrostática do vácuo K0 = 9,0×109 N.m2.C-2.

O sistema de unidades atômicas de Hartree é bastante útil para a descrição de sistemas quânticos microscópicos. Nele, faz-se com que a carga fundamental e, a massa do elétron m0, a constante eletrostática do vácuo K0 e a constante de Planck reduzida h sejam todas numericamente iguais á unidade.
Assinale a alternativa que contém a ordem de grandeza do valor numérico da velocidade da luz no vácuo c, nesse sistema de unidades.
Alternativas
Q1778016 Física
As linhas horizontais indicadas na figura representam os níveis de energia de um elétron de um átomo de hidrogênio e as setas verticais, numeradas de I a III, possíveis transições que podem ocorrer entre esses níveis quando o átomo emite um fóton de comprimento de onda λ.
Imagem associada para resolução da questão

Está de acordo com a teoria quântica a seguinte relação:
Alternativas
Q1778012 Física
A figura 1 representa as franjas claras e escuras formadas sobre um anteparo quando luz monocromática de comprimento de onda λ, proveniente de uma fonte pontual, atravessa uma estreita fenda de largura b = 0,10 mm existente em um obstáculo colocado paralelamente ao anteparo e a uma distância d = 2,0 m dele.
Imagem associada para resolução da questão


O gráfico da figura 2 mostra a intensidade luminosa no anteparo em função da posição, representada pelo ângulo θ, que indica as posições onde ocorrem interferências destrutivas máximas.
Imagem associada para resolução da questão
Sabendo que o ângulo θ para o qual ocorre a primeira região escura é tal que Imagem associada para resolução da questão, que a largura do claro de maior intensidade no anteparo é L = 48 mm, e adotando sen0,69º = tg0,69º = 0,012, o comprimento de onda da luz incidente sobre a fenda é
Alternativas
Q1778011 Física
Uma vela acesa foi colocada parada, verticalmente, a 4 m de distância de uma parede também vertical. Na região entre a vela e a parede existem duas posições onde se pode fixar uma lente convergente gaussiana, de distância focal 0,75 m, de modo que sejam projetadas sobre a parede imagens nítidas da chama dessa vela. Essas posições estão indicadas na figura e nomeadas como Posição 1, a uma distância x1 da vela, e Posição 2, distante x2 da vela.

É correto afirmar que a relação x1 / x2é igual a:
Alternativas
Q1778010 Física
Um raio de luz monocromático propaga-se por um meio homogêneo A, incide sobre a superfície S que separa esse meio de outro meio homogêneo B e passa a se propagar pelo meio B, conforme a figura. Os ângulos θ1 e θ2 são, respectivamente, os ângulos de incidência e de refração, nesse processo.
Imagem associada para resolução da questão

A gráfico que representa como o senθ1 varia em função do senθ2 é:
Alternativas
Q1778009 Física
O circuito da figura é constituído por sete capacitores que são interligados com fios e conexões de resistência desprezível.
Imagem associada para resolução da questão

A capacitância equivalente entre os pontos A e B desse circuito é
Alternativas
Q1778006 Física
O gráfico representa a intensidade do campo elétrico (E) criado por uma esfera maciça isolante de raio R, uniformemente carregada, em função da distância ao seu centro (r), para valores de r < R.
Imagem associada para resolução da questão

Adotando o valor Imagem associada para resolução da questão para a constante eletrostática e π = 3, o valor da densidade volumétrica de cargas dessa esfera é:
Alternativas
Q1778002 Física
Em um calorímetro ideal e de paredes adiabáticas, existem 600 g de água líquida a 5 ºC. A esse sistema, são acrescentados mais 400 g de água líquida a 10 ºC e 500 g de gelo a – 60 ºC. Adotando o calor específico da água líquida igual a cL = 1 cal/(g × ºC), o calor específico do gelo igual a cG = 0,5 cal/(g × ºC) e o calor latente de fusão do gelo igual a L = 80 cal/g, depois de atingido o equilíbrio térmico, dentro do calorímetro haverá
Alternativas
Q1777999 Física
Um foguete é lançado verticalmente para cima de uma plataforma localizada na superfície da Terra, atingindo uma altitude máxima igual ao quádruplo do raio terrestre. Considerando como m, a massa do foguete, M, a massa da Terra, R, o raio superficial terrestre, G, a constante de gravitação universal, e desprezando qualquer outro agente sobre o foguete que não seja o efeito gravitacional, a velocidade de seu lançamento deve ser obtida da seguinte expressão:
Alternativas
Q1777995 Física
O professor de Física de certa turma de alunos do Ensino Médio faz uma experiência para demonstrar a interferência de ondas sonoras. Dirige-se ao estacionamento da escola onde há uma região bem ampla, silenciosa e o som sofre reflexão praticamente desprezível. Dois alunos trouxeram seus violões e foram colocados a uma certa distância um do outro. Eles emitiram, simultaneamente, a mesma nota musical com frequência de 400 Hz. A velocidade de propagação do som ali foi admitida com o valor 320 m/s. Uma aluna A ficou posicionada a 10,0 m de um violão e a 8,0 m do outro. Outra aluna B ficou a 8,2 m de um violão e a 9,8 m do outro, como ilustra a figura.
Imagem associada para resolução da questão

É correto afirmar que a aluna A
Alternativas
Q1777992 Física
O enunciado e a figura referem-se à questão.

A figura ilustra um divertimento de certo parque de diversões, que consiste de duas pistas retilíneas horizontais desniveladas e uma pista retilínea inclinada que as liga. Ao final da pista inferior, há um reservatório repleto de água que serve para frear os carrinhos com passageiros que nele penetram. Na figura, aparecem dois carrinhos A e B que percorrem as pistas sobre uma mesma linha de trilhos. Suas massas diferem devido à diferença de pesos dos passageiros.



Dados: mA = 100 kg; mB = 120 kg
             PQ =50 m; senα = 0,6; cos α = 0,8; g = 10 m/s² 
As velocidades dos carrinhos após a colisão foram mantidas constantes até o ponto P em que se iniciou a descida pela pista inclinada. A inclinação se faz por um ângulo α em relação à direção horizontal.
O carrinho A chegou ao ponto Q com velocidade de 8,0 m/s. Já o carrinho B manteve constante sua velocidade durante o percurso de P a Q. A intensidade da força de atrito entre os trilhos e as rodas do carrinho A foi de _____________ N e o coeficiente de atrito entre os trilhos e as rodas do carrinho B foi ___________.
A alternativa que preenche, correta e respectivamente, as lacunas é:
Alternativas
Q1777991 Física
O enunciado e a figura referem-se à questão.

A figura ilustra um divertimento de certo parque de diversões, que consiste de duas pistas retilíneas horizontais desniveladas e uma pista retilínea inclinada que as liga. Ao final da pista inferior, há um reservatório repleto de água que serve para frear os carrinhos com passageiros que nele penetram. Na figura, aparecem dois carrinhos A e B que percorrem as pistas sobre uma mesma linha de trilhos. Suas massas diferem devido à diferença de pesos dos passageiros.



Dados: mA = 100 kg; mB = 120 kg
             PQ =50 m; senα = 0,6; cos α = 0,8; g = 10 m/s² 
Ainda na pista superior, o carrinho B, que se movimentava à velocidade de 10 m/s, colidiu com o carrinho A que se encontrava em repouso passando, então, o carrinho A a se movimentar a uma velocidade de 6,0 m/s. É correto afirmar que tal colisão foi
Alternativas
Respostas
681: B
682: C
683: E
684: C
685: C
686: B
687: B
688: D
689: B
690: B
691: C
692: E
693: D
694: B
695: C
696: B
697: A
698: B
699: D
700: C