Questões de Concurso Militar DPC - Marinha 2013 para Praticante de Prático
Foram encontradas 50 questões
I) Grande parte do componente da resistência ao avanço devido à geração de ondas é causado pela parte superior do casco em contato com a água e junto à linha d’água.
II) Em baixa velocidade, as ondas geradas pelo navio são diminutas, e a resistência ao avanço passa a ser quase que totalmente constituída pelos componentes de resistência viscosa do casco.
III) Experimentos realizados demonstram que, mesmo para cascos lisos ou com baixa rugosidade de navios novos, a resistência de atrito corresponde a 80 a 85% da resistência total em navios de baixa velocidade e chega a 50% da resistência total em navios de alta velocidade, quando navegando em alta velocidade.
IV) A resistência devido à geração de vórtices é causada pela formação de redemoinhos provocados por distúrbios nas linhas de corrente devido a alterações abruptas de forma, apêndices ou outras projeções do casco abaixo da linha d’água, mas exclui os vórtices que geram o atrito tangencial ao casco.
I) Devido aos tipos de hélices empregados e às velocidades de operação típicas, tal fenômeno não ocorre em navios mercantes, somente preocupando quem projeta ou opera embarcações de recreio de alta velocidade ou navios militares.
II) É um fenômeno encontrado em hélices propulsores submetidos a cargas severas, onde, a partir de um valor específico de rotações, ocorre uma progressiva quebra no escoamento e consequente perda de tração.
III) A cavitação ocasiona danos que podem ocorrer principalmente devido ao processo de colapso de bolhas formadas na superfície das pás dos hélices propulsores.
IV) Apesar de ser usual assumir que a cavitação deve ocorrer quando a pressão nas pás do hélice atingir a pressão de vapor da água, tal fenômeno pode ocorrer antes disso, pois a água do mar possui ar dissolvido e arrastado, o que antecipa a formação de bolhas.
I) Em águas rasas, a interação navio-navio torna-se mais severa do que aquela originada puramente por causas hidrodinâmicas em águas profundas.
II) Navegando em um canal, junto à margem por BE, a interação sofrida pelo navio devido aos chamados “bank effects” pode ser, em princípio, contrabalançada carregando o leme para uma posição adequada, de modo a manter o navio guinando para BE.
III) Em uma manobra de “head-on passing”, um navio navegando em um canal estreito sofre um pequeno aumento de velocidade no início da interação com outro navio, podendo ocorrer uma leve redução da sua velocidade no final da passagem.
IV) Um rebocador com propulsão convencional, quando operando ao longo de um navio de grande porte, sofre mudanças repentinas nos sentidos das forças e momentos gerados pela interação com o navio, à medida que ele altera sua posição em relação à popa e à proa do navio.
V) O efeito “squat” sofrido por um navio pode ser medido através da diferença das leituras entre os calados na proa com o navio em movimento adiante e com o navio parado.
I) A diferença de pressão resultante causada pelo movimento da água é proporcional à densidade da água e ao quadrado da velocidade do movimento.
II) Em um navio com dois eixos propulsores instalados, com propulsores idênticos girando em sentidos opostos para movimentar o navio adiante ou a ré, a força lateral exercida sobre o navio devido à ação dos propulsores é o dobro da força lateral que ocorreria caso o navio fosse dotado com apenas um desses propulsores.
III) A velocidade do ar deve ser aproximadamente 30 vezes a velocidade da água, para que a pressão dinâmica resultante da ação dos movimentos do ar e da água, sobre um mesmo corpo e aplicada sob as mesmas condições, seja a mesma.
IV) Considerando-se um hidrofólio como sendo um corpo projetado para obter uma força de sustentação quando inclinado em relação à direção do fluxo da água, a força de arrasto (drag) é definida como sendo a componente da força exercida nesse corpo que atua na direção paralela ao fluxo de corrente livre relativo (relative free stream flow) da água.
V) Um submarino dotado com apenas um propulsor, quando navegando isolado em grande profundidade e em mar aberto, não sofre ação apreciável, na sua popa, da força lateral gerada pela rotação do propulsor.
I) Em um navio dotado com um único propulsor, a grandeza da força lateral (side force) causada pelo propulsor varia com o tipo de navio e com o tipo da estrutura sob a água nas vizinhanças do propulsor.
II) Um propulsor girando para a direita, visto pela popa, tende a forçar a popa a deslocar-se para a esquerda.
III) Um propulsor girando para esquerda, visto pela popa, tende a forçar a popa a deslocar-se para a direita.
IV) Em um navio dotado de dois propulsores com sentidos de rotação inversos, para gerar empuxo adiante, quando o propulsor de BE, visto pela popa, tem rotação para direita, o propulsor de BB está dando a ré e o de BE está dando adiante, a força lateral resultante exercida pela ação desses propulsores tem o sentido de BB para BE.
V) Em um navio dotado com um único propulsor, a direção da força lateral gerada pela rotação do propulsor depende somente do sentido de rotação do propulsor.
I) Em uma manobra de ultrapassagem entre dois navios em um canal estreito, considerando que uma interação entre os mesmos esteja ocorrendo, é possível que essa interação induza uma guinada nas proas dos navios em direção uma da outra, podendo resultar em colisão.
II) Numa manobra de ultrapassagem (“overtaking”), a interação entre os navios depende da distância e da velocidade relativa entre ambos.
III) Em uma manobra de ultrapassagem (“overtaking”), um navio pode evitar a situação de ter que continuar preso navegando próximo ao outro navio (hydrodinamically trapped together), aumentando a velocidade relativa entre ambos.
IV) Para um mesmo navio, quando a razão H/T aumenta, o efeito “squat” também aumenta, sendo H a profundidade da água e T o calado médio estático do navio medido à meia-nau ou próximo dela.
V) Em um canal com pouca profundidade, o efeito interativo chamado de “following wake” pode ser minimizado ou evitado pelo aumento da velocidade do navio.