Questões de Física - Gravitação Universal para Concurso

Foram encontradas 198 questões

Q2183874 Física
O experimento de Henry Cavendish (1797) foi utilizado para medir a interação gravitacional entre pares de esferas de chumbo, o que nos permite o cálculo da constante gravitacional G na lei da gravitação universal de Newton. Além de fornecer a densidade da Terra e consequentemente sua massa, proposta inicial do experimento, foi capaz de comprovar a validade da lei de Newton para a gravitação em escalas menores do que as do sistema solar. A Interação gravitacional, que estabelece como certas partículas ou objetos interagem, é uma das quatro interações fundamentais encontradas na natureza. Na interação gravitacional, a Força F entre dois objetos massivos M e m é proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância entre eles (r²). Sendo assim, quando a distância inicial entre dois objetos massivos é reduzida à metade, a interação entre eles, que inicialmente era F, passa a ser de 
Alternativas
Q2182426 Física

Duas massas de 600 kg, cada uma distante uma da outra 6 m, têm como força gravitacional entre elas:

(Considere G = 6,67 x 10–11N . m²/kg².) 

Alternativas
Q2182420 Física
Sobre a história da Física, analise as afirmativas a seguir.
I.
Geocentrismo: os seguidores de Aristóteles consideravam a teoria geocêntrica, onde a Terra era o centro do universo. Para Ptolomeu, a teoria geocêntrica era válida, mas também considerava que os planetas descreviam órbitas circulares em torno de um centro C, que, por sua vez, descreviam órbitas circulares em torno da Terra.
II. Heliocentrismo: estudando o sistema proposto por Ptolomeu, Nicolau Copérnico concorda com os tipos de movimentos, mas percebe que as respostas a seus estudos se adéquam ao colocar o Sol no centro do Universo e, com isso, ele introduz a ideia de um sistema heliocêntrico, onde vem se confirmar com Johannes Kepler e Galileu Galilei.
III. Além de descobrir evidências de que o sistema era realmente heliocêntrico, Kepler também contribuiu ao descobrir que as órbitas eram circulares e não elípticas.
IV. Galileu Galilei aponta um determinado instrumento para o céu, que mais tarde foi chamado de telescópio, e observa o movimento dos astros, os satélites de Júpiter, as fases de Vênus etc. A partir de então se estabelece o marco que divide a Cosmologia Antiga da Cosmologia Moderna.

Está(ão) INCORRETA(S) apenas a(s) afirmativa(s)
Alternativas
Q2182403 Física
Ao redor da Terra atua uma região conhecida como campo gravitacional. Ele tem como principal objetivo atrair todos os corpos para o centro do Planeta. Essa atração acontece por meio da influência de uma força – a força gravitacional. Qualquer corpo pode sofrer a influência dessa força. Segundo Newton, isso acontece porque o peso do corpo sempre está dirigido para o centro da Terra. Quando os corpos chegam ao campo gravitacional sofrem variação em sua velocidade, porque adquirem aceleração, chamada de aceleração da gravidade.
Imagem associada para resolução da questão

As imagens mostram que todo corpo colocado na superfície terrestre sofre a influência da força peso, que atrai esses corpos para o centro da Terra. Considerando a Teoria de Newton sobre a “aceleração da gravidade na superfície da Terra”, a força de atração gravitacional que existe entre a Terra e o corpo é dada pela equação:
Alternativas
Q2182398 Física
“Muitas civilizações antigas, além de observar e classificar os astros, também chegaram a construir observatórios fixos para comparar a posição das estrelas com o correr do tempo. Muitos foram os modelos para explicar a posição relativa dos planetas, do Sol e da Terra. Entre as entidades observadas estavam os planetas – ‘errantes’. Estes, ao contrário das estrelas, que mantinham fixas suas posições relativas, ‘erravam’, mudando de posição em relação às estrelas. Mas foi somente no século XVI que Nicolau Copérnico propôs o modelo heliocêntrico (hélio = sol e cêntrico = centro) em que o Sol é o centro do sistema planetário e os planetas, entre eles a Terra, orbitam ao seu redor.”
(Disponível em: https://guiadoestudante.abril.com.br/estudo/resumo-de-fisica-gravitacao-universal/.)
Ainda, no século XVI, precisamente no ano de 1665, ao estudar o movimento da Lua, Newton concluiu que a força que faz com que ela esteja constantemente em órbita é do mesmo tipo que a força que a Terra exerce sobre um corpo em suas proximidades. A partir daí criou a Lei da Gravitação Universal. Sobre a Lei de Gravitação Universal, analise as afirmativas a seguir.
I. Dois pontos materiais atraem-se com forças cujas intensidades são diretamente proporcionais às suas massas e inversamente proporcionais ao quadrado da distância que os separa.
II. O termo G é uma constante de proporcionalidade denominada constante gravitacional universal.
III. Em unidades do SI, G = 6,67 × 10–11 N ∙ m²/kg².

Está(ão) correta(s) a(s) afirmativa(s) 
Alternativas
Q2170794 Física
Assinale a alternativa que indica corretamente, em termos do Raio da Terra (RTerra), a distância do centro da Terra até um ponto onde a aceleração da gravidade é g/8. 
Alternativas
Q2114000 Física
O matemático e astrônomo alemão Johannes Kepler teve importante contribuição para a astronomia ao descrever o movimento dos astros em suas três leis. Uma das observações propostas por Kepler foi que as órbitas dos Planetas não eram circulares, e sim elípticas, com o Sol ocupando a posição de um dos focos. Nessas órbitas elípticas, os Planetas se movimentam mais rapidamente quando estão mais próximos do Sol (periélio) e mais lentamente ao se encontrarem mais distantes (afélio). Essa diferença entre as velocidades dos Planetas quando estão mais próximos e mais distantes do Sol pode ser explicada pela:
Alternativas
Q2112244 Física
A órbita de um satélite geoestacionário ao redor da Terra tem período igual ao de rotação do planeta, de modo que um observador situado na superfície da Terra percebe o satélite fixo no céu. Para que um satélite geoestacionário permaneça em órbita, esta deve estar próxima ao plano que contém a linha do Equador terrestre e a intensidade da força de atração gravitacional entre esse satélite e a Terra deve ser 
Alternativas
Ano: 2019 Banca: IBADE Órgão: SEE-AC Prova: IBADE - 2019 - SEE-AC - Professor - Física |
Q2070640 Física
Um cometa qualquer gira em torno do sol com um período de 76 anos. A menor distância entre este cometa e o sol é 8,9 x 1010m, que é chamada de periélio. Marque a alternativa que apresenta de forma aproximada, a maior distância do cometa ao sol, em metros. Dados: massa do sol é igual a M = 1,99 x 1030kg e a constante gravitacional é G = 6,67 x 10-11 m³/kg.s².
Alternativas
Q2066234 Física

Em relação ao movimento dos objetos, julgue o item subsequente.


Considere que, em virtude da atração gravitacional, dois asteroides, A e B, de massas equivalentes no espaço interplanetário, atraiam-se e choquem-se, de modo que, se uma pessoa estivesse em A, veria o asteroide B caindo sobre sua cabeça; se estivesse em B, teria a mesma sensação. Nessa situação hipotética, esse efeito ocorre devido à energia potencial gravitacional do asteroide A, supondo-se que ele caia de uma altura h do asteroide B.

Alternativas
Q2064834 Física
Suponha que pudéssemos cavar um túnel, diametralmente, através da Terra e considere M a sua massa. Se soltássemos uma partícula de massa m, no túnel, a partir da superfície da Terra, desprezando os atritos e considerando a densidade da Terra uniforme igual ϱ, e que G seja Constante Gravitacional Universal, o tempo que essa partícula leva para atingir o centro da Terra é
Alternativas
Q2064562 Física
Considere as afirmações abaixo alteradas a partir do trabalho de Hermano R. de Carvalho e Lucas A. do Nascimento, - “Copérnico e a teoria heliocêntrica: contextualizando os fatos, apresentando as controvérsias e implicações para o ensino das ciências” (RELEA, n.27, p 7, 2019). Analise as afirmativas a seguir e dê valores Verdadeiro (V) ou Falso (F).
( ) As grandes esferas de cristal encaixadas e girando uma dentro da outra, que são defendidas por Ptolomeu, não são refutadas por Copérnico. A própria teoria de Copérnico consistia apenas numa versão modificada do sistema ptolomaico transpondo os papéis da Terra e do Sol. ( ) Sob o aspecto da matemática e da quantidade de epiciclos que devem ser usados para explicar os movimentos dos corpos celestes Copérnico não constrói uma teoria tão diferente. Seu trabalho possui cálculos complexos e um número de círculos maior que do Almagesto. ( ) O modelo de Copérnico retira toda a complexidade dos movimentos aparentes de retrogressão e progressão observados para os planetas. Consegue atribuí-los completamente à Terra (de onde são observados os planetas) por conta de seu deslocamento em torno do Sol. Com isso, as irregularidades aparentes no céu ganham um modelo universal, e a autoridade do modelo ptolomaico (da astronomia matemática) é superada pela astronomia física. ( ) As navegações e as tentativas de reforma do calendário eram grandes motivações para se querer estudar os corpos celestes na época de Copérnico.


Considerando o modelo copernicano, suas realizações, contexto histórico, e as diferenças com o modelo ptolomaico-aristotélico, assinale a alternativa que apresenta a sequência correta de cima para baixo. 
Alternativas
Q2064546 Física
A Estação Espacial Internacional (ISS) está a cerca de 400 km de altura, e são populares os vídeos que mostram o cotidiano dos astronautas em gravidade zero. O raio da terra é de cerca de 6400 km.
Assinale a alternativa que apresenta a expressão correta para o valor do campo gravitacional terrestre a uma altura igual a da ISS (g’) em relação ao valor da gravidade na superfície do planeta (g). 
Alternativas
Q2064545 Física

A imagem abaixo foi elaborada por Isaac Newton em sua obra Principia onde registra-se o movimento orbital ao redor de um planeta, costumeiramente ligada à representação pictórica da frase “um corpo em órbita é um corpo em queda permanente”. 


Imagem associada para resolução da questão



Considere um ponto bem elevado do planeta como o Aconcágua, em Mendoza na Argentina, com aproximadamente 7 km de altitude, que será lançado em movimento orbital. Utilize, se necessário, os valores aproximados de 6,67 x 10-11 N.m2 /kg2 para a constante da gravitação universal, de 6.1024 kg para a massa da Terra, 6.400 km para o raio da Terra e √10 = 3,2.


Para fins de cálculo, considere a aproximação: 6,67 = 20/3.

No contexto dessa analogia, analise as afirmações desprezando-se todos os efeitos dissipativos possíveis:


I. Seria possível lançar um objeto horizontalmente de maneira a realizar uma volta completa ao redor de um planeta.

II. Um objeto de 1kg lançado do topo do Aconcágua com velocidade de aproximadamente 1 km/s não conseguiria realizar uma volta completa ao redor da Terra.

III. Considerando as órbitas mais elevadas (distantes da superfície). Nestas condições, a velocidade da órbita é dependente da massa do planeta, da massa do objeto e da distância entre seus centros de massa.


Estão corretas as afirmativas:

Alternativas
Q2064538 Física

Júpiter e suas luas são observáveis com um telescópio amador. As quatro maiores luas de Júpiter foram descobertas por Galileu em 1610 e marcam o início da exploração do cosmos por meio de telescópios.

Sabendo-se que o período orbital da lua Europa é aproximadamente o dobro do período orbital da lua Io, e que o período orbital da lua Ganímedes é aproximadamente o dobro do período orbital da lua Europa, assinale a alternativa que melhor representa uma possível configuração visível em uma observação do céu em que essas três luas e Júpiter estão alinhados no plano perpendicular à direção de observação (plano de observação). As linhas horizontais estão equidistantes e considere 3√4 =1,6.

Alternativas
Q2064341 Física
Sobre o Sistema Solar, assinale a afirmativa incorreta.
Alternativas
Q2064318 Física
Um estudante, quando aprendeu a Lei da Gravitação Universal, ao saber que o primeiro satélite artificial da Terra, o Sputinik 1, lançado em 1957, tinha o tamanho de uma bola de basquete, resolveu estimar sua velocidade orbital, supondo sua órbita circular.
Para isto pesquisou na internet e obteve os valores da massa e do raio da Terra, da massa do Sputinik 1 e da altitude em que se encontrava e da constante de gravitação universal.
Ao fazer os cálculos verificou que era desnecessário saber o valor
Alternativas
Q2015965 Física
Um eclipse lunar só pode acontecer quando o Sol, a Terra e a Lua estiverem alinhados e a Lua estiver na fase
Alternativas
Ano: 2021 Banca: FAPEC Órgão: SAD-MS Prova: FAPEC - 2021 - SAD-MS - Professor - Física |
Q2013478 Física
No dia 4 de outubro de 2021, Pedro olhou para o oeste às 18h e viu a lua completamente iluminada no horizonte. Assim, ela se trata da lua
Alternativas
Ano: 2021 Banca: FAPEC Órgão: SAD-MS Prova: FAPEC - 2021 - SAD-MS - Professor - Física |
Q2013472 Física
O movimento orbital da Terra em torno do Sol é um movimento circular de raio ct, em que c é a velocidade da luz e t o tempo para a luz ir do Sol a Terra. Período de movimento translação T, a constante da Gravitação Universal é G, a raiz quadrada do produto entre a massa do Sol e a constante de Gravitação Universal é:
Alternativas
Respostas
61: B
62: B
63: B
64: B
65: A
66: D
67: D
68: C
69: C
70: E
71: B
72: D
73: A
74: A
75: A
76: B
77: C
78: A
79: B
80: E