Questões de Concurso Sobre movimento harmônico em física

Foram encontradas 129 questões

Q805530 Física
Considere a Terra uma esfera homogênea de raio R e massa M. Suponha que um pequeno corpo de massa m seja abandonado a partir do repouso em uma das bocas de um túnel que atravessa totalmente o planeta, cavado ao longo de seu eixo de rotação. Sabe-se que, se não houvesse qualquer dissipação de energia mecânica, o corpo abandonado realizaria um movimento harmônico simples. Usando R = 6,4 · 106 m; M = 6,0 · 1024 kg; G = 6,7 · 10-11 N m2 kg-2 e π = 3,14, o período desta oscilação é:
Alternativas
Q805529 Física

Em estruturas de Engenharia Civil com problemas de vibrações excessivas originados pela atuação de diversas ações dinâmicas de caráter periódico ou transiente, pode-se recorrer a diversas técnicas de controle de vibrações de caráter passivo, ativo, semiativo ou híbrido. Um dos modelos utilizados são instalações de molas nas bases de prédios, cuja simulação de oscilação pode ser observada na figura abaixo. Para isso, usa-se um corpo com 4 kg de massa que oscila verticalmente em movimento harmônico simples, suspenso por uma mola helicoidal ideal, toda vez que é submetido a oscilações verticais não previstas. As posições ocupadas pelo corpo são registradas numa fita vertical de papel, por meio de um estilete preso ao corpo. A fita desloca-se horizontalmente com velocidade constante de 0,4 m/s, e assim é possível determinar com exatidão as oscilações.

Imagem associada para resolução da questão

A fim de que sejam respeitadas as condições acima, a constante elástica da mola que deve ser utilizada no modelo de previsão de danos, aproximadamente, é igual a:

Alternativas
Q800405 Física
        Imagem associada para resolução da questão

A figura precedente ilustra a situação em que um bloco, preso a uma mola, pode se deslocar sobre uma superfície horizontal lisa e sem atrito. O bloco tem massa m igual a 0,25 kg e, quando em movimento, a sua posição varia conforme a função x(t) a seguir.
 x(t) = (2,0 m) × cos[(4 rad/s) t + 2π/3 rad]

Tendo como referência essas informações e assumindo 3,14 como o valor de π, julgue o item subsecutivo.
O movimento do bloco é periódico e o seu período é superior a 1,50 s.
Alternativas
Q800404 Física
        Imagem associada para resolução da questão A figura precedente ilustra a situação em que um bloco, preso a uma mola, pode se deslocar sobre uma superfície horizontal lisa e sem atrito. O bloco tem massa m igual a 0,25 kg e, quando em movimento, a sua posição varia conforme a função x(t) a seguir.  x(t) = (2,0 m) × cos[(4 rad/s) t + 2π/3 rad] Tendo como referência essas informações e assumindo 3,14 como o valor de π, julgue o item subsecutivo. A força (F) que a mola exerce sobre o bloco obedece à lei de Hooke e é descrita matematicamente pela relação F(x) = -4xN.
Alternativas
Q800403 Física
       Imagem associada para resolução da questão  A figura precedente ilustra a situação em que um bloco, preso a uma mola, pode se deslocar sobre uma superfície horizontal lisa e sem atrito. O bloco tem massa m igual a 0,25 kg e, quando em movimento, a sua posição varia conforme a função x(t) a seguir.  x(t) = (2,0 m) × cos[(4 rad/s) t + 2π/3 rad] Tendo como referência essas informações e assumindo 3,14 como o valor de π, julgue o item subsecutivo. Quando a velocidade do bloco é 6 m/s, a energia potencial elástica da mola é a menor possível.
Alternativas
Q796736 Física
A corda de um violão está afinada no lá fundamental (440 hz) e tem o comprimento de 60 cm entre os pontos de apoio. É possível produzir um harmônico (múltiplo da frequência fundamental) ao tocar com o dedo levemente numa posição onde haveria um nó da frequência desejada no momento em que se percute a corda. Medida à partir de uma das extremidades da corda, qual a posição do nó para que a frequência produzida seja 1320 hz?
Alternativas
Q796735 Física

Uma mola de constante elástica 10 N/m e massa desprezível está apoiada horizontalmente numa mesa e uma das suas extremidades, à direita, está presa numa parede. A outra extremidade, livre, recebe o impacto, da esquerda para a direita, de uma pequena quantidade de massa de modelar (49 g) a uma velocidade de 2 m/s. Após o impacto a massa de modelar fica presa à extremidade da mola e passa a descrever um movimento harmônico na horizontal, sem atrito.

Calcule o tempo que levará o conjunto massa mola para, a partir do impacto, atingir o ponto onde a mola fica mais estendida. A opção que mais se aproxima do resultado é:

Alternativas
Q792719 Física
Um oscilador harmônico ideal oscila verticalmente regido pela função y = 0.05cos (πt + π/2 ) em unidades do SI. Sobre esse oscilador, ele possui energia cinética o triplo da potencial nos pontos Imagem associada para resolução da questão
Alternativas
Q788192 Física

 

  A figura precedente, no sistema cartesiano de coordenadas ortogonais xOy, representa a trajetória de um móvel em movimento circular uniforme no sentido anti-horário, com velocidade angular constante ω, em radiano por segundo. A posição da projeção, em metros, de um ponto dessa trajetória no eixo x chama-se elongação e descreve um movimento harmônico simples. A máxima elongação (chamada de amplitude) equivale ao raio do círculo do movimento circular. A equação que associa a elongação em função do tempo é expressa por E(t) = Acosφ(t) = Acos(φ + ωt), em que φ e A são, respectivamente, a fase e a amplitude da elongação.

Tendo como referência essas informações e considerando um móvel cuja equação da elongação seja E(t) = 6 cosImagem associada para resolução da questão, julgue o item seguinte.

O móvel gastará 2 segundos para completar uma volta no círculo.

Alternativas
Ano: 2017 Banca: Quadrix Órgão: SEDF Prova: Quadrix - 2017 - SEDF - Professor - Engenharia |
Q776609 Física

Uma determinada onda propaga-se segundo a equação Imagem associada para resolução da questão onde as variáveis estão expressas no Sistema Internacional (SI). Considerando essa equação, julgue o item a seguir.

A velocidade de propagação da onda é igual a 1,0 m/s.

Alternativas
Ano: 2017 Banca: Quadrix Órgão: SEDF Prova: Quadrix - 2017 - SEDF - Professor - Engenharia |
Q776608 Física

Uma determinada onda propaga-se segundo a equação Imagem associada para resolução da questão onde as variáveis estão expressas no Sistema Internacional (SI). Considerando essa equação, julgue o item a seguir.

A amplitude da onda é de 8 m.

Alternativas
Q2773861 Física

O relógio mostrado abaixo é chamado de Relógio de Pêndulo ou pêndulo que bate segundos, o que significa que o período desse pêndulo, considerado simples, é igual a 1,0 (um) segundo, aqui na Terra.


Imagem associada para resolução da questão

(https://traumartes.wordpress.com/produtos/relogios/)


Imaginemos que esse relógio seja levado para a Lua, cuja aceleração da gravidade na superfície equivale a 1/6 da aceleração da gravidade na superfície da Terra, logo o período desse relógio tem um valor próximo de:

Alternativas
Ano: 2016 Banca: IF-PI Órgão: IF-PI Prova: IF-PI - 2016 - IF-PI - Professor - Física |
Q2721719 Física

Um pêndulo cônico é definido pelo movimento circular horizontal, a velocidade constante, de um corpo de massa m na ponta de uma corda de comprimento L, conforme figura abaixo. Qual a frequência desse movimento?


Imagem associada para resolução da questão

Fonte: Robert Resnick, David Halliday, Kenneth S. Krane. Física 1. Rio de janeiro: LTC, 2011. P.114.

Alternativas
Ano: 2016 Banca: IF-PI Órgão: IF-PI Prova: IF-PI - 2016 - IF-PI - Professor - Física |
Q2721713 Física

Um pêndulo simples de comprimento L e massa m é um sistema simples e facilmente resolvido no formalismo newtoniano. Determine a lagrangiana desse sistema

Alternativas
Ano: 2016 Banca: IF-PI Órgão: IF-PI Prova: IF-PI - 2016 - IF-PI - Professor - Física |
Q2721692 Física

Um oscilador harmônio simples, consiste em uma mola atuante sobre um corpo que desliza sobre uma superfície horizontal lisa. Se a massa do corpo é dobrada, então:

Alternativas
Ano: 2016 Banca: IBADE Órgão: SEDUC-RO
Q1236332 Física
Uma corda com de comprimento e densidade linear 0,0025 kg/m, está com suas extremidades bem fixadas. Uma das frequências de ressonância é 252 Hz. A frequência de ressonância imediatamente acima desta é 336 Hz. Portanto o harmônico correspondente à frequência de 252 Hz é o:
Alternativas
Ano: 2016 Banca: FCC Órgão: SEDU-ES Prova: FCC - 2016 - SEDU-ES - Professor - Física |
Q940226 Física

Um bloco de massa 100 g oscila em MHS preso à extremidade de uma mola de constante K = 800 N/m, sobre uma superfície horizontal sem atrito.

O máximo afastamento do bloco em relação à origem é de 10 cm. A máxima velocidade do bloco é, em m/s,

Alternativas
Ano: 2016 Banca: FCC Órgão: SEDU-ES Prova: FCC - 2016 - SEDU-ES - Professor - Física |
Q940224 Física

Um motor produz vibrações transversais em uma corda de 0,60 m de comprimento, tendo uma extremidade fixa a uma parede e a outra ligada ao motor. A frequência produzida pelo motor é de 50 Hz e na corda se estabelece uma onda estacionária, de acordo com a figura abaixo.


Imagem associada para resolução da questão

A velocidade de propagação da onda na corda é, em m/s,

Alternativas
Q759204 Física

                                              

O sistema ilustrado na figura precedente mostra uma mola de constante elástica igual 1 N/cm, a qual sustenta uma massa de 100 g. Assumindo a aceleração da gravidade igual a 9,8 m/s2 , e 3,14 como o valor aproximado de π, julgue o item seguinte.

O sistema tem um período de oscilação superior a 2,0 segundos.

Alternativas
Q744468 Física

Um peso P de dimensões desprezíveis pode ser posto a oscilar como um pêndulo simples (I) ou como um pêndulo cônico (II), por meio de um fio ideal. Considere que

 na figura I, o pêndulo simples está na extremidade da oscilação, formando um ângulo θ com a vertical. Nesse momento a força de tração tem módulo T.

 na figura II, o pêndulo cônico está girando com velocidade angular constante, formando ângulo θ com a vertical que contém o centro de rotação. Nesse momento a força de tração tem módulo T'. 

Imagem associada para resolução da questão

A razão T/T'   vale

Alternativas
Respostas
61: A
62: C
63: C
64: C
65: E
66: B
67: A
68: C
69: C
70: E
71: C
72: A
73: B
74: B
75: A
76: C
77: C
78: B
79: E
80: A