Questões de Concurso
Sobre movimento harmônico em física
Foram encontradas 121 questões
Uma peça de 200 g de um brinquedo oscila com movimento harmônico simples na horizontal, devido a uma mola de massa desprezível com constante elástica de 20 N/m. Essa peça se desloca de uma extremidade a outra de uma trajetória de 20 cm.
Com referência a essas informações, assinale a opção correta acerca do movimento da referida peça.
Um físico construiu um protótipo de um acelerômetro com um pêndulo simples de massa M e comprimento L. Para testar o equipamento, ele realizou medições de período T em um laboratório, com o pêndulo oscilando em pequenas amplitudes.
Assinale a opção correta acerca do protótipo referido nessa situação hipotética.
A figura acima ilustra um arranjo utilizado para demolição de parede. Nesse arranjo, uma esfera de massa M, considerada idealmente como uma partícula, encontra-se pendurada por um cabo de aço inextensível de comprimento L preso a uma argola sem atrito. O cabo L faz um ângulo θ com relação a direção vertical e a massa M se encontra, inicialmente, à distância D do anteparo A (parede).
Considerando essa situação, julgue o item que se segue.
Se a partícula M se chocar elasticamente, com uma velocidade vetorial com o anteparo A, rigidamente preso à Terra, e o r
v
anteparo não se romper, então a partícula M irá, logo após o
choque, reverter seu movimento com a velocidade na direção
horizontal igual a - v
A figura acima ilustra um arranjo utilizado para demolição de parede. Nesse arranjo, uma esfera de massa M, considerada idealmente como uma partícula, encontra-se pendurada por um cabo de aço inextensível de comprimento L preso a uma argola sem atrito. O cabo L faz um ângulo θ com relação a direção vertical e a massa M se encontra, inicialmente, à distância D do anteparo A (parede).
Considerando essa situação, julgue o item que se segue.
Para não haver choque com a parede, D = L ⋅ cosθ.
A figura acima ilustra um arranjo utilizado para demolição de parede. Nesse arranjo, uma esfera de massa M, considerada idealmente como uma partícula, encontra-se pendurada por um cabo de aço inextensível de comprimento L preso a uma argola sem atrito. O cabo L faz um ângulo θ com relação a direção vertical e a massa M se encontra, inicialmente, à distância D do anteparo A (parede).
Considerando essa situação, julgue o item que se segue.
Considere que, ao se chocar com o anteparo A, a partícula de
massa M fique em repouso, e posicionada na mesma altura que
estava ao ser liberada. Nesse caso, o trabalho realizado pelas
forças dissipativas que atuam entre o anteparo e a partícula
será igual a M⋅v2
/2, em que v é o módulo da velocidade
imediatamente antes do choque.
A figura acima ilustra a situação em que, sobre uma mesa suspensa, movimenta-se, em movimento circular uniforme, sem atrito, uma esfera de massa M, com velocidade tangencial v, presa a outra esfera de massa m, por uma corda de tamanho R + L. A parte da corda que está sobre a mesa tem comprimento R e a parte da corda embaixo da mesa tem comprimento L. A corda é inextensível.
A partir das informações acima, julgue o item que se segue, considerando a mesa de espessura desprezível.
Se o sistema estiver, inicialmente, fora do equilíbrio, então,
quando o ponto de equilíbrio for atingido, a massa m passará
a realizar um movimento oscilatório em torno desse ponto,
devido aos efeitos de inércia.
A figura acima ilustra a situação em que, sobre uma mesa suspensa, movimenta-se, em movimento circular uniforme, sem atrito, uma esfera de massa M, com velocidade tangencial v, presa a outra esfera de massa m, por uma corda de tamanho R + L. A parte da corda que está sobre a mesa tem comprimento R e a parte da corda embaixo da mesa tem comprimento L. A corda é inextensível.
A partir das informações acima, julgue o item que se segue, considerando a mesa de espessura desprezível.
Se o sistema não estiver em equilíbrio, de tal forma que a
massa m tenda a descer (L aumenta), então a velocidade v
tangencial irá aumentar à medida que a massa m descer.
A figura acima ilustra a situação em que, sobre uma mesa suspensa, movimenta-se, em movimento circular uniforme, sem atrito, uma esfera de massa M, com velocidade tangencial v, presa a outra esfera de massa m, por uma corda de tamanho R + L. A parte da corda que está sobre a mesa tem comprimento R e a parte da corda embaixo da mesa tem comprimento L. A corda é inextensível.
A partir das informações acima, julgue o item que se segue, considerando a mesa de espessura desprezível.
Considere que o sistema não esteja, inicialmente, em equilíbrio
e que a massa m tenda a descer. Nesse caso, se a velocidade
inicial da massa m for zero, então o tempo que o sistema levará
para entrar em equilíbrio dependerá do comprimento da corda
sobre a mesa.
A figura acima ilustra a situação em que, sobre uma mesa suspensa, movimenta-se, em movimento circular uniforme, sem atrito, uma esfera de massa M, com velocidade tangencial v, presa a outra esfera de massa m, por uma corda de tamanho R + L. A parte da corda que está sobre a mesa tem comprimento R e a parte da corda embaixo da mesa tem comprimento L. A corda é inextensível.
A partir das informações acima, julgue o item que se segue, considerando a mesa de espessura desprezível.
Se o sistema está em equilíbrio, então M⋅ v2
/R = m⋅ g, em que
g é a aceleração da gravidade.
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Com base nessas informações, julgue o item.
Se a esfera de massa m oscilar em movimento harmônicosimples com frequência ω, então o carrinho também irá oscilarem movimento harmônico simples com frequência ω.
O estudo dos fenômenos ondulatórios constitui parte importante da física, tendo reflexos em diversas áreas como a óptica, a acústica, o eletromagnetismo e a teoria quântica. Com relação aos movimentos ondulatórios e à propagação de ondas, julgue o item seguinte.
A aceleração de um corpo que executa um movimento harmônico simples é inversamente proporcional ao seu deslocamento.
A energia desse oscilador, em mJ, é
x(t) = 2,0 + 1,5sen(4t),
na qual, t é o tempo em segundos e x é a posição do bloco em cm. Qual é, em segundos, o período de oscilação do corpo?