Questões de Concurso
Sobre inglês
Foram encontradas 17.270 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
According to researchers in Mechanical Engineering at Penn State University, hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, Professor Bo Cheng and his team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.
“We essentially reverse-engineered the inner working of the wing musculoskeletal system — how the muscles and skeleton work in hummingbirds to flap the wings,” said first author and Penn State mechanical engineering graduate student Suyash Agrawal. “The traditional methods have mostly focused on measuring activity of a bird or insect when they are in natural flight or in an artificial environment where flight-like conditions are simulated. But most insects and, among birds specifically, hummingbirds are very small. The data that we can get from those measurements are limited.”
Penn State researchers used muscle anatomy literature, computational fluid dynamics simulation data and wing-skeletal movement information captured using micro-CT and X-ray methods to inform their model. They also used an optimization algorithm based on evolutionary strategies, known as the genetic algorithm, to calibrate the parameters of the model. According to the researchers, their approach is the first to integrate these disparate parts for biological fliers.
With this model, the researchers uncovered previously unknown principles of hummingbird wing actuation. While Cheng emphasized that the results from the optimized model are predictions that will need validation, he said that it has implications for technological development of aerial vehicles.
Internet: <www.labmanager.com> (adapted).
Judge the following item according to the previous text.
The research findings presented in the text have yielded
numerous advancements for the aerospace industry.
According to researchers in Mechanical Engineering at Penn State University, hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, Professor Bo Cheng and his team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.
“We essentially reverse-engineered the inner working of the wing musculoskeletal system — how the muscles and skeleton work in hummingbirds to flap the wings,” said first author and Penn State mechanical engineering graduate student Suyash Agrawal. “The traditional methods have mostly focused on measuring activity of a bird or insect when they are in natural flight or in an artificial environment where flight-like conditions are simulated. But most insects and, among birds specifically, hummingbirds are very small. The data that we can get from those measurements are limited.”
Penn State researchers used muscle anatomy literature, computational fluid dynamics simulation data and wing-skeletal movement information captured using micro-CT and X-ray methods to inform their model. They also used an optimization algorithm based on evolutionary strategies, known as the genetic algorithm, to calibrate the parameters of the model. According to the researchers, their approach is the first to integrate these disparate parts for biological fliers.
With this model, the researchers uncovered previously unknown principles of hummingbird wing actuation. While Cheng emphasized that the results from the optimized model are predictions that will need validation, he said that it has implications for technological development of aerial vehicles.
Internet: <www.labmanager.com> (adapted).
Judge the following item according to the previous text.
According to the text, Penn State researchers were the first to
use the genetic algorithm to investigate flying patterns.
According to researchers in Mechanical Engineering at Penn State University, hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, Professor Bo Cheng and his team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.
“We essentially reverse-engineered the inner working of the wing musculoskeletal system — how the muscles and skeleton work in hummingbirds to flap the wings,” said first author and Penn State mechanical engineering graduate student Suyash Agrawal. “The traditional methods have mostly focused on measuring activity of a bird or insect when they are in natural flight or in an artificial environment where flight-like conditions are simulated. But most insects and, among birds specifically, hummingbirds are very small. The data that we can get from those measurements are limited.”
Penn State researchers used muscle anatomy literature, computational fluid dynamics simulation data and wing-skeletal movement information captured using micro-CT and X-ray methods to inform their model. They also used an optimization algorithm based on evolutionary strategies, known as the genetic algorithm, to calibrate the parameters of the model. According to the researchers, their approach is the first to integrate these disparate parts for biological fliers.
With this model, the researchers uncovered previously unknown principles of hummingbird wing actuation. While Cheng emphasized that the results from the optimized model are predictions that will need validation, he said that it has implications for technological development of aerial vehicles.
Internet: <www.labmanager.com> (adapted).
In the text, the term ‘reverse-engineered’ (first sentence of the second paragraph) is not referring to an industrial product, which represents a variation of its conventional meaning.
( ) Many companies nowadays tend to overlook data gathering.
( ) The accounting profession has managed to resist the impact of technology.
( ) In the study mentioned by the text, full population testing is to be preferred to sampling.
The statements are, respectively:
Assinale a alternativa que preenche corretamente as lacunas.
Assinale a alternativa que preenche corretamente as lacunas.
Choose the alternative that completes the blanks.
Choose the alternative that completes the blank.
Choose the alternative that completes the blank.