Questões Militares
Sobre estática - momento da força/equilíbrio e alavancas em física
Foram encontradas 150 questões
Num mesmo local, foram comparados dois cubos maciços e homogêneos, de dimensões idênticas. Ao serem verificadas suas massas, a uma mesma temperatura ambiente, foi observado que estas eram distintas.
Nesse contexto, considere as seguintes afirmações:
I - Os cubos são feitos de materiais diferentes.
II - Os cubos são feitos de um mesmo material.
III - Ao mergulharmos os cubos num mesmo líquido, é possível que um deles afunde e que o outro flutue.
IV - Ao mergulharmos os cubos num mesmo líquido, um deles irá afundar e o outro flutuar.
Com relação às afirmações apresentadas, podemos afirmar que:
Carlos, professor de Física, procurou, em uma de suas aulas, discutir com seus alunos a facilidade de girar uma porca, com auxílio de uma chave, conforme a figura a seguir. Explicou, então, aos alunos que, para que as forças F1 e F2 , de instensidades distintas, possibilitem à porca, a mesma facilidade de girar em torno do seu eixo, o valor da intensidade de F2 deverá ser:
Um objeto de massa m = 10 kg está suspenso por dois cabos que exercem trações T 1 e T 2 de mesma intensidade T, de modo que |T 1| = |T 2| = T. As trações exercidas pelos cabos estão dispostas conforme mostra a figura ao lado, fazendo um ângulo de 30º com a direção horizontal. O objeto está em equilíbrio estático e sujeito à atração gravitacional da Terra. Nesse local, a aceleração gravitacional é g = 10 m/s2 . As medições no local são executadas por um observador inercial. Sabe-se que sen 30º = cos 60º = 1/2 , e que sen 60º = cos 30º = √3/2 . Levando em consideração os dados apresentados, assinale a alternativa que apresenta corretamente o valor do módulo da tração exercida por cada cabo.
O desenho a seguir representa uma aeronave vista de frente onde estão indicadas as forças de sustentação nas asas direita (SD) e esquerda (SE); e a força peso (P). Assinale a alternativa que melhor representa as forças na situação em que o piloto queira iniciar um giro da aeronave no sentido horário e em torno do eixo imaginário “E” que passa pelo corpo da aeronave. Considere que durante o giro
1- não há modificação na quantidade ou distribuição de cargas, pessoas, combustível e na massa da aeronave,
2- o módulo da força peso é igual a soma dos módulos das forças de sustentação direita e esquerda( P = SD = SE ), ou seja, a aeronave está em vôo horizontal,
3- as forças de sustentação estão equidistantes do eixo E,
4- o sentido horário é em relação a um observador fora da aeronave e a olhando de frente.
No sistema representado na figura a seguir, tem-se dois corpos A e B, sendo que o corpo A tem massa igual a 10 kg e o sistema está em equilíbrio estático. Esse sistema é composto por cordas ideais (massas desprezíveis e inextensíveis), além disso, na corda 2 tem-se uma tração de intensidade igual a 300 N.
Admitindo a aceleração da gravidade no local igual a 10 m/s2
,
determine, respectivamente, em kg, a massa do corpo B e, em N, o
valor da intensidade da tração na corda 4, que prende o corpo B ao
corpo A.
Analise a figura abaixo.
A figura representa o perfil de um plano inclinado de um
ângulo θ no qual estão fixas duas polias ideais de modo
que o trecho de fio 1 é horizontal e o trecho de fio 2 é
paralelo ao plano inclinado. Os fios são ideais e os atritos
são desprezíveis. Sabendo-se que os blocos A e B têm o
mesmo peso P, qual deve ser o peso do bloco C para que
o sistema permaneça em equilíbrio?
Uma esfera homogênea de massa m, considerada um ponto material, é colocada perfeitamente na extremidade A de uma barra, também homogênea, de peso igual a 20N e comprimento de 80cm. Sendo que do ponto O até a extremidade B tem-se 60cm. Qual deve ser o valor, em kg, da massa m da esfera para que a barra seja mantida na horizontal e em equilíbrio estático? Adote o modulo da aceleração da gravidade igual a 10 m/s2 .
Dados: sen 30° = cos 60° = 1/2
cos 30° = sen 60° = √3/2
![Imagem associada para resolução da questão](https://arquivos.qconcursos.com/images/provas/59176/a11e1b29d13b859dc7a4.png)
Analise a figura abaixo.
A figura acima mostra a seção reta longitudinal de uma caçamba rígida preenchida com troncos de madeira e apoiada sobre o plano inclinado de θ° por meio de pés retangulares transversais distantes D=3,0m um do outro. O equilíbrio estático da caçamba é mantido utilizando vários calços fixos. Considere o centro de massa CM distante h=1,0m do plano inclinado e equidistante dos pontos A e B nos quais estão aplicadas as resultantes das forças de contato, sendo A, B e CM pertencentes ao mesmo plano perpendicular ao plano inclinado. Desprezando o atrito, na iminência de a caçamba tombar (reação normal NB=0), a tangente do ângulo θ vale:
π = 3,14;
Aceleração da gravidade =10 m/s2.
Pressão atmosférica no nível do mar = 1,01 x 105 Pa
1 cal = 4,2 J.
Calor específico da água = 1 cal/g.K.
Calor específico do gelo = 0,5 cal/g.K.
Calor latente de fusão do gelo = 80 cal/g.
Constante dos gases ideais = 8,31 J/mol.K.
Constante de Coulomb = 9,0 x 109 N m2/C2.
A barra indicada na figura, presa de forma articulada
ao teto, é composta por dois segmentos. O primeiro
segmento possui 4 kg de massa e 10 m de
comprimento. Já o segundo
possui 2 kg de massa
e 2 m de comprimento. Sobre a extremidade da barra,
atua uma força horizontal para a direita, com
intensidade de 35 N. Se a barra está em repouso, a
tangente do ângulo θ que ela faz com a vertical vale
Na questão de Física, quando necessário, use:
• Aceleração da gravidade: g = 10 m/s2 ;
• Calor específico da água: c = 1,0 cal/g ºC;
• sen 45° = cos 45° = √2 /2.
Um armário, cujas dimensões estão indicadas na figura abaixo, está em repouso sobre um assoalho plano e horizontal.
Uma pessoa aplica uma força constante e horizontal,
cuja linha de ação e o centro de massa (CM) do armário
estão num mesmo plano vertical. Sendo o coeficiente de
atrito estático entre o assoalho e o piso do armário igual a
µ e estando o armário na iminência de escorregar, a altura
máxima H na qual a pessoa poderá aplicar a força para que
a base do armário continue completamente em contato com
o assoalho é
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Sobre uma prancha horizontal de massa desprezível e apoiada no centro, dois discos, de massas mA e mB, respectivamente, rolam com as respectivas velocidades vA e vB, constantes, em direção ao centro, do qual distam LA e LB, conforme a figura. Com o sistema em equilíbrio antes que os discos colidam, a razão vA/vB e dada por
Uma barra de 6 m de comprimento e de massa desprezível
é montada sobre um ponto de apoio (O), conforme pode ser visto
na figura. Um recipiente cúbico de paredes finas e de massa
desprezível com 20 cm de aresta é completamente cheio de água
e, em seguida, é colocado preso a um fio na outra extremidade.
A intensidade da força
, em N, aplicada na extremidade da
barra para manter em equilíbrio todo o conjunto (barra, recipiente
cúbico e ponto de apoio) é
Adote:
1) o módulo da aceleração da gravidade no local igual a 10 m/s2 ;
2) densidade da água igual a 1,0 g/cm3 ; e
3) o fio, que prende o recipiente cúbico, ideal e de massa desprezível.
Um pedreiro decidiu prender uma luminária de 6 kg entre
duas paredes. Para isso dispunha de um fio ideal de 1,3 m que foi
utilizado totalmente e sem nenhuma perda, conforme pode ser
observado na figura. Sabendo que o sistema está em equilíbrio
estático, determine o valor, em N, da tração que existe no pedaço
do fio ideal preso à parede. Adote o módulo da aceleração
da gravidade no local igual a 10 m/s2
.
O sistema mostrado na figura acima encontra-se em equilíbrio estático, sendo composto por seis cubos idênticos, cada um com massa específica μ uniformemente distribuída e de aresta a, apoiados em uma alavanca composta por uma barra rígida de massa desprezível. O comprimento L da barra para que o sistema esteja em equilíbrio é:
Uma haste AB rígida, homogênea com 4 m de comprimento e 20 N de peso, encontra-se
apoiada no ponto C de uma parede vertical, de altura 1,5 √3 m, formando um ângulo de 30º com
ela, conforme representado nos desenhos abaixo.
Para evitar o escorregamento da haste, um cabo horizontal ideal encontra-se fixo à extremidade da barra no ponto B e a outra extremidade do cabo, fixa à parede vertical.
Desprezando todas as forças de atrito e considerando que a haste encontra-se em equilíbrio estático, a força de tração no cabo é igual a
Dados: sen 30° = cos 60° = 0,5 e sen 60° = cos 30° = √3/2
A figura abaixo representa uma grua (também chamada de guindaste e, nos navios, pau de carga), que é um equipamento utilizado para a elevação e a movimentação de cargas e materiais pesados. Seu funcionamento é semelhante a uma máquina simples que cria vantagem mecânica para mover cargas além da capacidade humana.
Considerando que o contrapeso da grua mostrada na
figura acima tenha uma massa de 15 toneladas, pode-se
afirmar que a carga máxima, em kg, que poderá ser
erguida por ela nas posições 1, 2 e 3, respectivamente, é
de
Uma régua escolar de massa M uniformemente distribuída com o comprimento de 30 cm está apoiada na borda de uma mesa, com 2/3 da régua sobre a mesa. Um aluno decide colocar um corpo C de massa 2M sobre a régua, em um ponto da régua que está suspenso (conforme a figura). Qual é a distância mínima x, em cm, da borda livre da régua a que deve ser colocado o corpo, para que o sistema permaneça em equilíbrio?