Questões Militares Sobre gravitação universal em física

Foram encontradas 81 questões

Q686098 Física
De acordo com a equação da força gravitacional, é correto afirmar que:
Alternativas
Q682096 Física
Kepler era discípulo de Tycho Brahe, astrônomo dinamarquês que dedicou sua vida à observação do céu. Analisando durante 20 anos os dados compilados por Tycho Brahe, Kepler pôde formular suas três leis do movimento planetário, sendo que o enunciado “as orbitas dos planetas são elípticas e o sol se localiza num dos focos” se refere a uma dessas leis, essa lei e na ordem de criação de Kepler é: Imagem associada para resolução da questão
Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Física |
Q678327 Física

Caso necessário, use os seguintes dados:

Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0

Considere um segmento de reta que liga o centro de qualquer planeta do sistema solar ao centro do Sol. De acordo com a 2ª Lei de Kepler, tal segmento percorre áreas iguais em tempos iguais. Considere, então, que em dado instante deixasse de existir o efeito da gravitação entre o Sol e o planeta.

Assinale a alternativa correta.

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Física |
Q678325 Física

Caso necessário, use os seguintes dados:

Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0

Pela teoria Newtoniana da gravitação, o potencial gravitacional devido ao Sol, assumindo simetria esférica, é dado por −V = GM/r, em que r é a distância média do corpo ao centro do Sol. Segundo a teoria da relatividade de Einstein, essa equação de Newton deve ser corrigida para −V = GM/r + A/r2 , em que A depende somente de G, de M e da velocidade da luz, c. Com base na análise dimensional e considerando k uma constante adimensional, assinale a opção que apresenta a expressão da constante A, seguida da ordem de grandeza da razão entre o termo de correção, A/r2 , obtido por Einstein, e o termo GM/r da equação de Newton, na posição da Terra, sabendo a priori que k=1.
Alternativas
Q670245 Física

Imagem associada para resolução da questão

Considere um túnel retilíneo que atravesse um planeta esférico ao longo do seu diâmetro. O tempo que um ponto material abandonado sobre uma das extremidades do túnel leva para atingir a outra extremidade é

Dados:

• constante de gravitação universal: G;

• massa específica do planeta: ρ.

Consideração:

• Para efeito de cálculo do campo gravitacional, desconsidere a presença do túnel.

Alternativas
Q669235 Física

Conforme a definição da Lei da Gravitação Universal, a constante gravitacional universal (G = 6,67 x 10-11

Nm2/kg2)

Alternativas
Q668230 Física

Em um planeta distante da Terra, em outro sistema planetário, cientistas, obviamente alienígenas, estudam a colocação de uma estação orbital entre o seu planeta e sua lua, conforme pode ser visto na figura. Visando ajudá-los, determine a que distância, em km, do centro do planeta a estação (considerada uma partícula) deve ser colocada, de forma que a resultante das forças gravitacionais que atuam sobre a estação seja nula.

Observações:

-Massa do planeta alienígena: 25 .1020 kg.

-Massa da lua alienígena: 4 . 1018 kg.

-Distância do centro do planeta ao centro da lua: 312 .103 km.

-Considere o instante em que o planeta, a lua e a estação estão alinhados, conforme a figura.

Imagem associada para resolução da questão

Alternativas
Q659725 Física
Um astronauta afirmou que dentro da estação orbital a melhor sensação que ele teve foi a ausência de gravidade. Com relação a essa afirmação, pode-se dizer que está
Alternativas
Q655718 Física
Para a realização de um filme de ficção científica, o diretor imaginou um planeta β cujo raio é a metade do raio da Terra e a massa é dez vezes menor que a massa da Terra. O diretor, então, consultou um físico a fim de saber qual deveria ser o valor correto da aceleração da gravidade a qual estaria submetido um ser na superfície do planeta β. O físico, de acordo com as Leis da Gravitação Universal e adotando como referência uma pessoa na superfície da Terra, cuja aceleração da gravidade vale 10 m/s2 , disse que o valor da aceleração da gravidade para esse ser na superfície de β seria de _______ m/s2 .
Alternativas
Q652218 Física
Dois corpos de massas m1 e m2 estão separados por uma distância d e interagem entre si com uma força gravitacional F. Se duplicarmos o valor de m1 e reduzirmos a distância entre os corpos pela metade, a nova força de interação gravitacional entre eles, em função de F, será
Alternativas
Q645285 Física
Considere um sistema formado por dois corpos celestes de mesma massa M, ligados pela força de atração gravitacional. Sendo d a distância entre seus centros e G a constante gravitacional, qual é a energia cinética total do sistema, sabendo que os dois corpos giram em torno do centro de massa desse sistema?
Alternativas
Q645216 Física
Considere o raio da Terra igual a 6,39.103 km. Para que a aceleração da gravidade sobre um foguete seja 19% menor do que o seu valor na superfície da Terra, o foguete deverá atingir a altitude, em quilômetros, de
Alternativas
Q644734 Física

Um satélite encontra-se em órbita circular a 4800km de altura e em determinado momento realiza uma mudança de órbita, também circular, para uma altura de 1800 km. Considerar o raio da Terra como R=6400 km, a massa da terra como M=6 x 1024 kg e a constante gravitacional como G=6,7 x 10-11N.m2 /kg2 .

Marque a opção que indica, em valor aproximado, respectivamente, a velocidade da órbita inicial, a variação de velocidade, ao estabelecer a nova órbita, e o número de voltas em torno da Terra na nova órbita, por dia.

Alternativas
Q644666 Física
Suponha dois pequenos satélites, S1 e S2, girando em torno do equador terrestre em órbitas circulares distintas, tal que a razão entre os respectivos raios orbitais, r1 e r2, seja r2/ r1 = 4 . A razão T2/ T1 entre os períodos orbitais dos dois satélites é 
Alternativas
Q644651 Física

Um astronauta aproxima-se da Lua movendo-se ao longo da reta que une os centros do Sol e da Lua. Quando distante DL quilômetros do centro da Lua e DS quilômetros do centro do Sol, conforme mostrado na figura, ele passa a observar um eclipse total do Sol. Considerando o raio do Sol (RS) igual a 400 vezes o raio da Lua (RL), a razão entre as distâncias DS/DL é

Imagem associada para resolução da questão

Alternativas
Q644558 Física
Sabe-se que a distância média do planeta Terra ao Sol é de 1,5 × 1011 m e a distância média do planeta Urano ao Sol é de 3 × 1012 m. Pode-se afirmar, então, que o período de revolução do planeta Urano, em anos terrestres, é aproximadamente
Alternativas
Q633288 Física
Dois pequenos satélites A e B, idênticos, descrevem órbitas circulares ao redor da Terra. A velocidade orbital do satélite A vale vA = 2 x 103 m/s. Sabendo que os raios orbitais dos satélites são R relacionados por RB/RA = 1 x 102 a velocidade orbital do satélite B, em m/s, vale
Alternativas
Q628594 Física

Nas questões de Física, quando necessário, use aceleração da gravidade: g = 10 m/s2

densidade da água: d = 1,0 kg/L

calor específico da água: c = 1 cal/g °C

1 cal = 4 J

constante eletrostática: k = 9,0.109 N.m2 /C2

constante universal dos gases perfeitos: R = 8 J/mol.K 

Considere a Terra um Planeta esférico, homogêneo, de raio R, massa M concentrada no seu centro de massa e que gira em torno do seu eixo E com velocidade angular constante ω , isolada do resto do universo.

Um corpo de prova colocado sobre a superfície da Terra, em um ponto de latitude φ , descreverá uma trajetória circular de raio r e centro sobre o eixo E da Terra, conforme a figura abaixo. Nessas condições, o corpo de prova ficará sujeito a uma força de atração gravitacional Imagem associada para resolução da questão , que admite duas componentes, uma centrípeta, Imagem associada para resolução da questão , e outra que traduz o peso aparente do corpo, Imagem associada para resolução da questão .  


                   Imagem associada para resolução da questão


Quando Imagem associada para resolução da questão = 0° , então o corpo de prova está sobre a linha do equador e experimenta um valor aparente da aceleração da gravidade igual a ge . Por outro lado, quando Imagem associada para resolução da questão = 90° , o corpo de prova se encontra em um dos Polos, experimentando um valor aparente da aceleração da gravidade igual a gp .

Sendo G a constante de gravitação universal, a razão Imagem associada para resolução da questão vale  

Alternativas
Q616481 Física
Um satélite esférico, homogêneo e de massa m, gira com velocidade angular constante em torno de um planeta esférico, homogêneo e de massa M, em uma órbita circular de raio R e período T, conforme figura abaixo. Considerando G a constante de gravitação universal, a massa do planeta em função de R, T e G é:
Alternativas
Ano: 2015 Banca: Aeronáutica Órgão: ITA Prova: Aeronáutica - 2015 - ITA - Aluno - Física |
Q590937 Física
Quando precisar use os seguintes valores para as constantes: Aceleração da gravidade: 10 m/s2 . 1,0 cal = 4,2 J = 4,2×107 erg. Calor específico da água: 1,0 cal/g.K. Massa específica da água: 1,0 g/cm3. Massa específica do ar: 1,2 kg/m3. Velocidade do som no ar: 340 m/s
Considere duas estrelas de um sistema binário em que cada qual descreve uma órbita circular em torno do centro de massa comum. Sobre tal sistema são feitas as seguintes afirmações:
I. O período de revolução é o mesmo para as duas estrelas. II. Esse período é função apenas da constante gravitacional, da massa total do sistema e da distância entre ambas as estrelas. III. Sendo R1 e R2 os vetores posição que unem o centro de massa dos sistema aos respectivos centros de massa das estrelas, tanto R1 como R2 varrem áreas de mesma magnitude num mesmo intervalo de tempo.
Assinale a alternativa correta.
Alternativas
Respostas
41: A
42: C
43: A
44: E
45: B
46: C
47: B
48: D
49: B
50: D
51: A
52: D
53: E
54: D
55: C
56: C
57: D
58: A
59: E
60: D