Questões Militares Para física

Foram encontradas 3.929 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q1820338 Física
Um bloco de massa m deve ser levado para o alto de um plano inclinado de um ângulo θ com a horizontal, onde será deixado pendurado. Para isso, ele é colocado sobre outro corpo de massa M que o transportará para o alto. A figura 1 mostra o conjunto sendo empurrado para cima por uma força Imagem associada para resolução da questão e subindo com velocidade constante. A figura 2 mostra o corpo de massa M descendo sozinho, também com velocidade constante, sustentado por uma força Imagem associada para resolução da questão depois que o corpo de massa m foi deixado no alto.
Imagem associada para resolução da questão

Desprezando a resistência do ar e o atrito entre o corpo de massa M e o plano inclinado, o valor da razão F1/F2 é
Alternativas
Q1820337 Física
Em um campo de futebol, uma bola é chutada com velocidade inicial v0 = 20 m/s em uma direção que faz 45º com a horizontal. Nesse mesmo instante, um jogador, parado a 60 m do ponto onde ocorreu o chute, começa a correr ao encontro da bola em uma direção contida no mesmo plano vertical que contém a trajetória da bola. Desprezando a resistência do ar e adotando g = 10 m/s2 , a velocidade média desse jogador para que ele se encontre com a bola no mesmo instante em que ela atinge o gramado é, aproximadamente,
Imagem associada para resolução da questão
Alternativas
Q1820336 Física
Um trem de metrô partiu do repouso de uma estação A e moveu-se, em linha reta, até uma estação B, distante 1080 m de A. Nesse trajeto, esse trem acelerou a uma taxa constante de 1,2 m/s2 até metade do percurso e, em seguida, desacelerou a uma taxa também constante até parar na estação B. A velocidade escalar média desenvolvida por esse trem, na viagem de A até B, foi de
Alternativas
Q1814838 Física

As figuras a seguir ilustram, simplificadamente, o princípio de funcionamento de um GPS: três satélites, posicionados a distâncias R1, R2 e R3, emitem ondas eletromagnéticas que comunicam a receptores situados na superfície da Terra suas respectivas distâncias ao longo do tempo. Tais satélites perfazem duas voltas por dia na Terra, enquanto satélites geoestacionários demoram um dia para dar uma volta no nosso planeta. 


A partir das informações e das figuras apresentadas, julgue o seguinte item.


A relatividade especial prevê a dilatação temporal quando há movimento relativo entre dois corpos, por isso, do ponto de vista de um observador na Terra, o relógio de um satélite GPS fica adiantado em relação ao seu tempo próprio, devido à alta velocidade do satélite.

Alternativas
Q1814837 Física

As figuras a seguir ilustram, simplificadamente, o princípio de funcionamento de um GPS: três satélites, posicionados a distâncias R1, R2 e R3, emitem ondas eletromagnéticas que comunicam a receptores situados na superfície da Terra suas respectivas distâncias ao longo do tempo. Tais satélites perfazem duas voltas por dia na Terra, enquanto satélites geoestacionários demoram um dia para dar uma volta no nosso planeta. 


A partir das informações e das figuras apresentadas, julgue o seguinte item.


A razão entre os raios médios das órbitas de satélites geoestacionários e satélites GPS é igual a 3√4 .

Alternativas
Q1814836 Física

As figuras a seguir ilustram, simplificadamente, o princípio de funcionamento de um GPS: três satélites, posicionados a distâncias R1, R2 e R3, emitem ondas eletromagnéticas que comunicam a receptores situados na superfície da Terra suas respectivas distâncias ao longo do tempo. Tais satélites perfazem duas voltas por dia na Terra, enquanto satélites geoestacionários demoram um dia para dar uma volta no nosso planeta. 


A partir das informações e das figuras apresentadas, julgue o seguinte item.


Considere que dois satélites, de massas m1 e m2, respectivamente, sendo m2 igual ao dobro de m1, estejam em órbita circular no mesmo planeta a uma mesma altitude, com velocidades v1 e v2, respectivamente. Nessa situação, a velocidade v2 será igual à metade da velocidade v1

Alternativas
Q1814835 Física

As figuras a seguir ilustram, simplificadamente, o princípio de funcionamento de um GPS: três satélites, posicionados a distâncias R1, R2 e R3, emitem ondas eletromagnéticas que comunicam a receptores situados na superfície da Terra suas respectivas distâncias ao longo do tempo. Tais satélites perfazem duas voltas por dia na Terra, enquanto satélites geoestacionários demoram um dia para dar uma volta no nosso planeta. 


A partir das informações e das figuras apresentadas, julgue o seguinte item.


Considere que uma onda eletromagnética parta do vácuo e adentre a atmosfera terrestre. Nessa situação, a onda terá sua velocidade reduzida, mas não necessariamente sofrerá desvio em sua direção de propagação.

Alternativas
Q1814834 Física

As figuras a seguir ilustram, simplificadamente, o princípio de funcionamento de um GPS: três satélites, posicionados a distâncias R1, R2 e R3, emitem ondas eletromagnéticas que comunicam a receptores situados na superfície da Terra suas respectivas distâncias ao longo do tempo. Tais satélites perfazem duas voltas por dia na Terra, enquanto satélites geoestacionários demoram um dia para dar uma volta no nosso planeta. 


A partir das informações e das figuras apresentadas, julgue o seguinte item.
A velocidade média de um satélite GPS cujo raio de órbita mede 24 × 103 km é inferior a 4 km/s.
Alternativas
Q1811672 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Uma fonte emite dois tipos de partículas eletricamente carregadas, P1 e P2, que são lançadas no interior de uma região onde atua somente um campo elétrico vertical e uniforme Imagem associada para resolução da questão. Essas partículas penetram perpendicularmente ao campo, a partir do ponto A, com velocidade Imagem associada para resolução da questão, indo colidir num anteparo vertical nos pontos S e R, conforme ilustrado na figura.
Imagem associada para resolução da questão
Observando as medidas indicadas na figura acima e sabendo que a partícula P1 possui carga elétrica q1 e massa m1 e que a partícula P2 possui carga elétrica q2 e massa m2, pode-se afirmar que a razão Imagem associada para resolução da questão vale
Alternativas
Q1811671 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Considere duas fontes pontuais, F1 e F2, coerentes, separadas por uma certa distância, que emitem ondas periódicas harmônicas de frequência f = 340 Hz em um meio bidimensional, homogêneo e isotrópico. Um sensor de interferência é colocado em um ponto P, que se encontra sobre a mesma mediatriz que o ponto O, pertencente ao segmento que une as fontes F1 e F2, como representa a figura seguinte.
Imagem associada para resolução da questão
No ponto P, o sensor registra uma interferência construtiva. Posteriormente, este sensor é movido para o ponto O ao longo do segmento Imagem associada para resolução da questão e deslocado para o ponto C, distante 4,25 m da fonte F1. Nesse ponto C, o sensor se posiciona na segunda linha nodal da estrutura de interferência produzida pelas fontes. Reposicionando o sensor para o ponto Q, distante 0,50 m do ponto C, obtém-se a primeira linha nodal. Nessas condições, a distância x, em metro, entre o ponto Q e o segundo máximo secundário, localizado no ponto R, é igual a
Alternativas
Q1811670 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
A equação de uma onda periódica harmônica se propagando em um meio unidimensional é dada, em unidades do SI, por y(x,t) = π 2 cos(80πt - 2πx). Nessas condições, são feitas as seguintes afirmativas sobre essa onda: I) O comprimento de onda é 2 m. II) A velocidade de propagação é 40 m/s. III) A frequência é 50 Hz. IV) O período de oscilação é 2,5∙10-2 s. V) A amplitude de onda é de π m e a onda se propaga para a direita.
São corretas apenas as afirmativas
Alternativas
Q1811668 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Um projétil de massa 2m é disparado horizontalmente com velocidade de módulo v, conforme indica a Figura 1, e se movimenta com essa velocidade até que colide com um pêndulo simples, de comprimento L e massa m, inicialmente em repouso, em uma colisão perfeitamente elástica.
Imagem associada para resolução da questão
Considere que o projétil tenha sido lançado de uma distância muito próxima do pêndulo e que, após a colisão, esse pêndulo passe a oscilar em movimento harmônico simples, como indica a Figura 2, com amplitude A.
Imagem associada para resolução da questão
Desprezando a ação de forças dissipativas, o período de oscilação desse pêndulo, logo após a colisão, é dado por
Alternativas
Q1811667 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Para encher o pneu de sua bicicleta, um ciclista, conforme figura a seguir, dispõe de uma bomba em formato cilíndrico, cuja área de seção transversal (A) é igual a 20 cm2 . A mangueira de conexão (M) é indeformável e tem volume desprezível.
Imagem associada para resolução da questão
O pneu dianteiro da bicicleta tem volume de 2,4 L e possui, inicialmente, uma pressão interna de 0,3 atm. A pressão interna da bomba, quando o êmbolo (E) está todo puxado à altura (H) de 36 cm, é igual a 1 atm (pressão atmosférica normal). Considere que, durante a calibragem, o volume do pneu permanece constante e que o processo é isotérmico, com temperatura ambiente de 27 ºC. Nessas condições, para elevar a pressão do pneu até 6,3 atm, o número de repetições que o ciclista deverá fazer, movendo o êmbolo até o final do seu curso, é
Alternativas
Q1811666 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Uma porta retangular de vidro, de 12 mm de espessura, 2,0 m de altura e 1,0 m de largura, separa um ambiente, onde a temperatura é mantida a 20 ºC, do meio externo, cuja temperatura é - 4 ºC. Considerando que a perda de calor desse ambiente se dê apenas através da porta, a potência, em W, de um aquecedor capaz de manter constante esta temperatura deve ser igual a
Alternativas
Q1811665 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
A umidade relativa do ar fornece o grau de concentração de vapor de água em um ambiente. Quando essa concentração atinge 100% (que corresponde ao vapor saturado) ocorre uma condensação. A umidade relativa (UR) é obtida fazendo-se uma comparação entre a densidade do vapor d’água presente no ar e a densidade do vapor se este estivesse saturado, ou seja, UR = densidade do vapor d'água presente no ar/densidade do vapor d'água saturado.
A tabela a seguir fornece a concentração máxima de vapor d’água (em g/cm3) medida nas temperaturas indicadas.
Temperatura (ºC) Concentração máxima(g/cm3) 0 5,0 5 7,0 10 9,0 12 12 15 14 18 18 20 20 24 24 28 28 30 31 32 35 34 36 36 40
Em um certo dia de temperatura 32 ºC e umidade relativa de 40%, uma pessoa percebe que um copo com refrigerante gelado passa a condensar vapor d’água (fica “suado”). Nessas condições, a temperatura, em ºC, do copo com o refrigerante era, no máximo,
Alternativas
Q1811664 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Uma barra homogênea e impermeável de massa específica ρ é mantida presa, por um fio ideal, ao fundo de um tanque que contém dois líquidos não miscíveis, de densidades ρA e ρB, conforme a figura abaixo:
Imagem associada para resolução da questão
Para que seja nula a tração no fio, a razão entre o volume da barra que fica submersa apenas no líquido de densidades ρA e o seu volume total, pode ser expressa por:
Alternativas
Q1811660 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Foram apresentados a um aluno de física, os seguintes gráficos representativos de movimentos retilíneos.
Imagem associada para resolução da questão
Ao analisar os gráficos o aluno percebeu que podem representar um mesmo movimento, os gráficos
Alternativas
Q1811659 Física
Nas questões de Física, quando necessário, utilize:

 aceleração da gravidade: g = 10 m/s2
 cos 30º = sen 60º = √3/2
 cos 60º = sen 30º = 1/2
 condutividade térmica do vidro: K = 0,8 W/(m·K)
 1 atm = 1,0·105 N/m2
 constante universal dos gases: R = 8,0 J/(mol·K)
 1 L = 1 dm3
 1 cal = 4 J
 calor específico da água: c = 1 cal/(g·ºC)
 velocidade da luz no vácuo: c = 3 x 108 m/s
 constante de Planck: h = 6,6 x 10–34 J∙s
 carga elementar (e) = 1,6 x 10–19 C
 1 Å = 10-10 m 
Na Figura 1, a seguir, tem-se uma vista de cima de um movimento circular uniforme descrito por duas partículas, A e B, que percorrem trajetórias semicirculares, de raios RA e RB, respectivamente, sobre uma mesa, mantendo-se sempre alinhadas com centro C.
Imagem associada para resolução da questão
Ao chegarem à borda da mesa, conforme ilustra a Figura 2, as partículas são lançadas horizontalmente e descrevem trajetórias parabólicas, livres de quaisquer forças de resistência, até chegarem ao piso, que é plano e horizontal. Ao longo dessa queda, as partículas A e B percorrem distâncias horizontais, XA e XB, respectivamente.
Imagem associada para resolução da questão
Considerando RB = 4RA, a razão XB/XA será igual a
Alternativas
Q1806311 Física
O gráfico a seguir, normalizado pelo número de elementos, mostra o comportamento do decaimento de certo elemento radioativo em função do tempo, em dias.
Imagem associada para resolução da questão
Considerando o gráfico apresentado, julgue o item a seguir.
A vida-média do elemento em questão é menor que 18 dias.
Alternativas
Q1806310 Física
    O efeito fotoelétrico consiste, basicamente, na emissão de elétrons induzida pela ação da luz. A figura a seguir esquematiza um arranjo experimental em que uma luz incidente em uma placa metálica semicilíndrica (catodo), colocada dentro de uma ampola de vidro sob vácuo, arranca elétrons que vão para um coletor (anodo), gerando-se uma corrente que é medida por um amperímetro. Um reostato linear de comprimento L controla o potencial aplicado entre o anodo e o catodo pela bateria. Na figura, a e b representam os polos da bateria, Amp, o amperímetro, e Vol, o voltímetro, ambos considerados ideais.


Considerando o arranjo experimental apresentado e assumindo que a luz seja monocromática, que o módulo da carga do elétron e seja igual a 1,6 × 10−19 C e que a massa do elétron m seja igual a 9,1 × 10−31 kg, julgue o próximo item.
Para um potencial de corte de 4,55 V, o quadrado da velocidade máxima do fotoelétron é maior que 2 × 1013 m2 /s2 .
Alternativas
Respostas
501: A
502: D
503: E
504: E
505: C
506: E
507: C
508: C
509: A
510: B
511: D
512: C
513: A
514: C
515: C
516: D
517: C
518: D
519: E
520: E