Questões de Concurso
Sobre mecânica dos sólidos em engenharia mecânica
Foram encontradas 1.604 questões
Uma barra de aço carbono com seção transversal quadrada de
lado 5,0 cm tem um comprimento total de 4,0 m. Essa barra tem
uma das extremidades engastada e na outra extremidade, livre, é
aplicada uma carga de tração. No projeto dessa barra, o máximo
deslocamento admitido vale 2,0 mm, a máxima tensão normal
vale 200 MPa e o fator de segurança para a carga é igual a 2,0.
Sabendo que o aço carbono tem módulo de elasticidade igual a
200 GPa, a máxima carga de tração que pode ser imposta a essa
barra é de
A figura a seguir apresenta o estado de tensões em uma porção infinitesimal de uma peça mecânica.
Sabendo que σθ = 100MPa, σ' θ ,= 100MPa e τθ 40MPa, a máxima tensão cisalhante nesse elemento vale:
Um analisador de vibração — acelerômetro com espectro de frequências — é usado para monitorar regularmente um sistema grupo-gerador, informando os períodos de funcionamento e os intervalos de tempo de manutenção, de modo a melhor programar a correção de eventual problema.
Nessa situação hipotética, está caracterizada a configuração da
O estado plano de deformações pode ser representado graficamente
para se determinar sua solução por meio das componentes das
deformações por cisalhamento (γ) e normal (ε). Na situação da
figura precedente, que ilustra o círculo de Mohr para um estado
plano de deformação, as deformações principais εmax e εmin são
iguais, respectivamente, a
A figura precedente ilustra o círculo de tensões de Mohr, em que
a ordenada de um ponto sobre o círculo representa a tensão de
cisalhamento (τ) e a abcissa representa a tensão normal (σ).
Considerando essa figura, assinale a opção correta.
Para os casos de estruturas estaticamente indeterminadas, as equações de equilíbrio não são suficientes para determinar as ações e as reações na estrutura, a menos que as deformações sejam levadas em consideração. Nesse contexto, considere a figura acima, que mostra uma barra constituída de dois trechos (OM e MN) e rigidamente presa nas extremidades. O módulo de elasticidade do material da viga é 21.000 kN/cm², a área da seção transversal do trecho OM é 5 cm², a área da seção transversal do trecho MN é 7,5 cm² e a força P indicada é igual a 60 kN.
Tendo como referência a figura e as informações apresentadas,
e considerando que o sistema esteja em equilíbrio e haja
compatibilidade das deformações nos trechos, as reações R1 e R2
são iguais, respectivamente, a
A figura precedente ilustra a situação em que uma viga prismática (barra de eixo reto e seção transversal constante), feita de material elástico linear, é submetida a uma força de 20 kN. O momento de inércia (I) da seção transversal da viga é dado por I = (b × h³)/12, em que b = 10 cm e h = 30 cm. O módulo de elasticidade do material da viga é 21.000 kN/cm². Após a deformação, as seções transversais da viga permanecem planas e os deslocamentos da linha elástica são de pequena amplitude.
Na situação apresentada, o deslocamento vertical máximo da viga,
em cm, é
A figura ilustra um automóvel de peso total 9.000 N, parado em um
plano horizontal, com o centro de gravidade (CG) localizado a igual
distância dos lados direito e esquerdo do automóvel. Nessa
situação, as forças de reação, em newtons, em cada pneu dianteiro
e em cada pneu traseiro do automóvel são iguais, respectivamente, a
Em uma seção de barra quadrada de lado L, atuam somente
tensões normais que variam conforme o gráfico apresentado.
O valor do esforço normal será igual a
O estado de tensões para um disco, como raio interno a e raio externo b, girando com velocidade angular uniforme ω, é definido pela tensão normal radial σr e pela tensão nominal tangencial σɵ descritas abaixo. Determine A e B:
σr=A–(B/r²)–ρω²r²(3+ν)/8 σɵ=A+(B/r²)–ρω²r²(1+3ν)/8