Questões Militares
Sobre mcu - movimento circular uniforme em física
Foram encontradas 94 questões
Como a polia maior gira com uma frequência igual a 400 rotações por minuto (rpm), a frequência, em rpm, da polia menor é
Uma roda de bicicleta é composta de uma catraca (C), um pneu (P), 8 raios (R) e um aro (A). A distância (D) do centro da catraca a borda do pneu é de 0,6 m, conforme o desenho. A catraca está unida aos raios que por sua vez estão presos ao aro. O pneu é preso ao aro. Essa montagem permite que a catraca e o pneu girem juntos e coaxialmente. Se a frequência de rotação da catraca é igual a 5 rotações por segundo, a velocidade tangencial do pneu, em π m/s, é igual a
Analise as afirmativas abaixo, que se referem às grandezas impulso e quantidade de movimento.
I- Se uma partícula está submetida a uma força resultante constante, a direção da quantidade de movimento da partícula pode mudar.
II- Se uma partícula está se movendo em círculo com módulo da velocidade constante v, a intensidade da taxa de variação da quantidade de movimento no tempo é proporcional a v2.
III- Com o gráfico do módulo da força resultante que atua sobre uma partícula em função da posição x, pode-se obter o módulo do impulso sobre a partícula, calculando-se a área entre a curva e o eixo x.
IV- Se representa o impulso de uma determinada força, então representa a variação da força.
Assinale a opção correta.
π = 3,14;
Aceleração da gravidade =10 m/s2.
Pressão atmosférica no nível do mar = 1,01 x 105 Pa
1 cal = 4,2 J.
Calor específico da água = 1 cal/g.K.
Calor específico do gelo = 0,5 cal/g.K.
Calor latente de fusão do gelo = 80 cal/g.
Constante dos gases ideais = 8,31 J/mol.K.
Constante de Coulomb = 9,0 x 109 N m2/C2.
A figura abaixo mostra a vista superior de um anel de raio R que está contido em um plano horizontal e que serve de trilho, para que uma pequena conta de massa m se movimente sobre ele sem atrito. Uma mola de constante elástica k e comprimento natural R, com uma extremidade fixa no ponto A do anel e com a outra ligada à conta, irá movê-la no sentido anti-horário. Inicialmente, a conta está em repouso e localiza-se no ponto B, que é diametralmente oposto ao ponto A. Se P é um ponto qualquer e θ é o ângulo entre os segmentos e , a velocidade da conta, ao passar por P, é
π = 3,14;
Aceleração da gravidade =10 m/s2.
Pressão atmosférica no nível do mar = 1,01 x 105 Pa
1 cal = 4,2 J.
Calor específico da água = 1 cal/g.K.
Calor específico do gelo = 0,5 cal/g.K.
Calor latente de fusão do gelo = 80 cal/g.
Constante dos gases ideais = 8,31 J/mol.K.
Constante de Coulomb = 9,0 x 109 N m2/C2.
Uma bola encontra-se em repouso no ponto mais elevado de um morro semicircular de raio R, conforme indica a figura abaixo. Se é a velocidade adquirida pela bola imediatamente após um arremesso horizontal, determine o menor valor de | I para que ela chegue à região horizontal do solo sem atingir o morro durante sua queda. Desconsidere a resistência do ar, bem como qualquer efeito de rotação da bola. Note que a aceleração da gravidade tem módulo g.
Na questão de Física, quando necessário, use:
• Aceleração da gravidade: g = 10 m/s2 ;
• Calor específico da água: c = 1,0 cal/g ºC;
• sen 45° = cos 45° = √2 /2.
Duas partículas eletrizadas A e B, localizadas num plano isolante e horizontal α, estão em repouso e interligadas por um fio ideal, também isolante, de comprimento ℓ igual a 3 cm, conforme ilustrado na figura abaixo.
A partícula A está fixa e B pode mover-se, sem quaisquer
resistências sobre o plano. Quando B, que tem massa igual
a 20 g, está em repouso, verifica-se que a força tensora no
fio vale 9 N. Imprime-se certa velocidade na partícula B,
que passa a descrever um movimento circular uniforme em
torno de A, de tal forma que a força tensora no fio altera-se
para 15 N. Desprezando as ações gravitacionais, enquanto
a tensão no fio permanecer igual a 15 N, pode-se afirmar
que a energia do sistema, constituído das partículas A e B,
será, em J, de
Uma criança gira no plano horizontal, uma pedra com massa igual a 40g presa em uma corda, produzindo um Movimento Circular Uniforme. A pedra descreve uma trajetória circular, de raio igual a 72cm, sob a ação de uma força resultante centrípeta de módulo igual a 2N. Se a corda se romper, qual será a velocidade, em m/s, com que a pedra se afastará da criança?
Obs.: desprezar a resistência do ar e admitir que a pedra se afastará da criança com uma velocidade constante.
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Uma haste vertical de comprimento L, sem peso, e presa a uma articulação T e dispõe em sua extremidade de uma pequena massa m que, conforme a figura, toca levemente a quina de um bloco de massa M . Após uma pequena perturbação, o sistema movimenta-se para a direita. A massa m perde o contato com M no momento em que a haste perfaz um ângulo de π /6 rad com a horizontal. Desconsiderando atritos, assinale a velocidade final do bloco.
Um ponto material descreve um movimento circular uniforme com o módulo da velocidade angular igual a 10 rad/s. Após 100 s, o número de voltas completas percorridas por esse ponto material é
Adote π=3.
O sistema mostrado na figura gira em torno de um eixo central em velocidade angular constante ω. Dois cubos idênticos, de massa uniformemente distribuída, estão dispostos simetricamente a uma distância r do centro ao eixo, apoiados em superfícies inclinadas de ângulo θ . Admitindo que não existe movimento relativo dos cubos em relação às superfícies, a menor velocidade angular ω para que o sistema se mantenha nessas condições é:
Dados:
• aceleração da gravidade: g ;
• massa de cada cubo: m ;
• aresta de cada cubo: a ; e
• coeficiente de atrito entre os cubos e as superfícies inclinadas: μ .
Como mostra a figura, dois corpos de massa m e volume V em equilíbrio estático. Admita que μ é a massa específica do líquido, que não existe atrito entre o corpo e o plano inclinado e que as extremidades dos fios estão ligadas a polias, sendo que duas delas são solidárias, com raios menor e maior r e R , respectivamente. A razão R/r para que o sistema esteja em equilíbrio é:
Conforme a figura acima, um corpo, cuja velocidade é nula no ponto A da superfície circular de raio R, é atingido por um projétil, que se move verticalmente para cima, e fica alojado no corpo. Ambos passam a deslizar sem atrito na superfície circular, perdendo o contato com a superfície no ponto B. A seguir, passam a descrever uma trajetória no ar até atingirem o ponto C, indicado na figura. Diante do exposto, a velocidade do projétil é:
Dados:
• massa do projétil: m ;
• massa do corpo: 9m ; e
• aceleração da gravidade: g .
Considere as seguintes afirmações sobre o movimento circular uniforme (MCU):
I. Possui velocidade angular constante.
II. Possui velocidade tangencial constante em módulo, mas com direção e sentido variáveis.
III. A velocidade angular é inversamente proporcional à frequência do movimento.
IV. Possui uma aceleração radial, com sentido orientado para o centro da trajetória.
Das afirmações anteriores, são corretas:
Analise a figura abaixo.
Uma placa quadrada, de momento de inércia I=7, 0kg.m2 em relação ao eixo fixo z, está firmemente presa a este mesmo eixo. Desse modo a placa está confinada a mover-se sobre o plano xy e a girar em torno deste, com velocidade angular constante ω=0,70rad/s. Num dado instante t, ima partícula altamente aderente, uma partícula altamente aderente, de massa m=2,0kg, posicionada sobre o eixo z a uma distância de 5,0m da placa, conforme indica a figura acima, é lançada com uma velocidade =2,0 (m/s), no mesmo instante do plano xy. Qual a velocidade angular, em rad/s, da placa em torno do eixo z, no instante t=5s?
DADO: g=10m/s2
Analise a figura abaixo.
Uma haste uniforme, de comprimento L, massa M e momento de inércia I, gira em torno de um eixo vertical fixo com
velocidade angular ω, conforme indica a figura acima. Num
dado instante t', ela tem todo o seu comprimento colocado em
contato com uma superfície horizontal. Sendo g a aceleração
da gravidade local e μ o coeficiente de atrito cinético
entre a haste e a superfície, quanto tempo leva, a partir de
t', para a haste atingir o repouso?
Uma roda gigante possui 20 m de raio. Sabe-se que o módulo da força normal exercida pelo assento em uma criança de 56 kg, no ponto mais alto da roda gigante é de 333,2 N. A velocidade angular da roda gigante é:
(Considere: g = 10 m/s2 .)