Questões Militares
Sobre interpretação de texto | reading comprehension em inglês
Foram encontradas 2.202 questões
Billions of dollars spent on defeating improvised explosive devices (IED) are beginning to show what technology can and cannot do for the evolving struggle.
Two platoons of U.S. Army scouts are in a field deep in the notorious “Triangle of Death” south of Baghdad, a region of countless clashes between Sunni insurgents and Shia militias. The platoons are guided by a local man who’s warned them of pressure-plate improvised explosive devices, designed to explode when stepped on. He has assured them that he knows where the IED’s are, which means he is almost certainly a former Sunni insurgent.
The platoons come under harassing fire. It stops, but later the tension mounts again as they maneuver near an abandoned house known to shelter al-Qaeda fighters. A shot rings out; the scouts take cover. They don’t realize it’s just their local guide, with an itchy trigger finger, taking the potshot at the house. The lieutenant leading the patrol summons three riflemen to cover the abandoned house.
Then all hell breaks loose. One of the riflemen, a sergeant, steps on a pressure-plate IED. The blast badly injures him, the two other riflemen, and the lieutenant. A Navy explosives specialist along on the mission immediately springs into action, using classified gear to comb the area for more bombs. Until he gives the all clear, no one can move, not even to tend the bleeding men. Meanwhile, one of the frozen-inspace scouts notices another IED right next to him and gives a shout, provoking more combing in his area. Then a big area has to be cleared so that the medevac helicopter already on the way can land.
That incident, which took place on 7 November 2007, exhibits many of the hallmarks of the missions in Iraq and Afghanistan – a small patrol; a local man of dubious background; Navy specialists working with soldiers on dry land; and costly technologies pressed into service against cheap and crude weapons. And, most of all, death by IED.
Billions of dollars spent on defeating improvised explosive devices (IED) are beginning to show what technology can and cannot do for the evolving struggle.
Two platoons of U.S. Army scouts are in a field deep in the notorious “Triangle of Death” south of Baghdad, a region of countless clashes between Sunni insurgents and Shia militias. The platoons are guided by a local man who’s warned them of pressure-plate improvised explosive devices, designed to explode when stepped on. He has assured them that he knows where the IED’s are, which means he is almost certainly a former Sunni insurgent.
The platoons come under harassing fire. It stops, but later the tension mounts again as they maneuver near an abandoned house known to shelter al-Qaeda fighters. A shot rings out; the scouts take cover. They don’t realize it’s just their local guide, with an itchy trigger finger, taking the potshot at the house. The lieutenant leading the patrol summons three riflemen to cover the abandoned house.
Then all hell breaks loose. One of the riflemen, a sergeant, steps on a pressure-plate IED. The blast badly injures him, the two other riflemen, and the lieutenant. A Navy explosives specialist along on the mission immediately springs into action, using classified gear to comb the area for more bombs. Until he gives the all clear, no one can move, not even to tend the bleeding men. Meanwhile, one of the frozen-inspace scouts notices another IED right next to him and gives a shout, provoking more combing in his area. Then a big area has to be cleared so that the medevac helicopter already on the way can land.
That incident, which took place on 7 November 2007, exhibits many of the hallmarks of the missions in Iraq and Afghanistan – a small patrol; a local man of dubious background; Navy specialists working with soldiers on dry land; and costly technologies pressed into service against cheap and crude weapons. And, most of all, death by IED.
The region described in the passage…
Zürich is the engine of the Swiss economy. Despite having all the conveniences and daily activities of a metropolis, Zürich has been able to preserve the charm of a small town. Yet every day, more than 300,000 commuters, visitors, tourists and business travelers come to this ‘small town’ through Zürich Central Train Station – and that number has been rising steadily. To meet the increasing demand, the Swiss Federal Railways (SBB) together with the Canton of Zürich is expanding the station.
According to the passage …
Built in the mid-1960s, the Riverside Drive Parking Deck in Elgin, Illinois, is quite large. Approximately 1,000-ft (300-m) long by 60-ft (18-m) wide – and nearly all of it over the Fox River – the deck is built on hundreds of ‘piles’, large concrete cylinders pushed down into the muddy river bottom. Pre-cast elements in the piles used high-tensile steel wire for reinforcement, and that steel is now rusting. A trail-sized piece of the deck has even fallen into the river causing concern to local authorities.
About the Riverside Drive Parking Deck, what can NOT be concluded?
Leia a passagem seguinte e responda à pergunta que a segue.
Modern buildings incorporate exciting forms with glittering façades and compelling interior spaces. Surveying for these projects requires sophisticated computation, aggressive quality control and close interaction with construction teams.
Leia a passagem seguinte e responda à pergunta que a segue.
Modern buildings incorporate exciting forms with glittering façades and compelling interior spaces. Surveying for these projects requires sophisticated computation, aggressive quality control and close interaction with construction teams.
A frase a seguir apresenta 5 (cinco) palavras sublinhadas, dentre as quais uma está ERRADA, tornando a frase gramaticalmente incorreta. Marque a alternativa que torna a frase gramaticalmente INCORRETA.
Did you know that your car probably has more software running in it than the latest military fighter jets? Or that it has fifty or more embedded microprocessors that control everything from meeting governmental emission-control standards for automatically increasing the volume of your radio as you drive faster?
Considere as seguintes afirmações:
I. As listas verticais indicadas afinam a silhueta.
II. A figura mostra sapatos que não se desgastam com o tempo.
III. Inactive Wear é apropriada para praticantes de exercícios físicos.
Está(ão) correta(s):
In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.
For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.
How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.
In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.
(…)
Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12.
In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.
For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.
How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.
In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.
(…)
Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12.
De acordo com o texto, Evelyn Fox Keller
I. tornou-se PhD em Física pela Universidade de Harvard e foi a pioneira nos estudos sobre teoria de sistemas complexos.
II. acreditava na importância da Matemática não apenas para o estudo da Física, mas também da Biologia.
III. Influenciou as pesquisas do matemático Lee Segel, levando-o a se interessar pelo comportamento dos slime molds.
Está(ão) correta(s)