Questões de Concurso Sobre engenharia naval
Foram encontradas 1.295 questões
O momento de inércia mede a resistência à flexão da seção de viga em relação a eixo que passa pelo seu centro de gravidade. Quanto maior for o valor do momento de inércia da seção, mais resistente será a viga para suportar as forças externas. O módulo de resistência à flexão é a relação entre o momento de inércia da seção em relação a um eixo e a distância do ponto mais afastado da seção àquele eixo. A respeito dessa temática, julgue o item subsequente.
Se a seção caixão (ou retangular oca) representa
adequadamente o casco da embarcação, quanto maior for a
altura da seção (equivalente ao pontal), mais resistente será o
casco, e quanto maior for a boca da embarcação, mais
estável ela será em relação ao emborcamento. Assim, para
conferir maior estabilidade, as embarcações que transportam
granéis e contenedores devem ser construídas mantendo-se a
relação entre boca e calado igual a sete.
O momento de inércia mede a resistência à flexão da seção de viga em relação a eixo que passa pelo seu centro de gravidade. Quanto maior for o valor do momento de inércia da seção, mais resistente será a viga para suportar as forças externas. O módulo de resistência à flexão é a relação entre o momento de inércia da seção em relação a um eixo e a distância do ponto mais afastado da seção àquele eixo. A respeito dessa temática, julgue o item subsequente.
O módulo de resistência — definido, para a seção caixão (ou retangular oca), pela relação W = I/(p/2) = (bp3 - bmpm 3 )/6p, em que b é a boca, p é o pontal, bm é a boca moldada e pm é o pontal moldado — é útil em pré-dimensionamentos de seções simples por representar a capacidade de resistência da viga e requerer cálculos mais simples, mas, para a seção caixão, essa vantagem aparentemente inexiste.
A partir dessas informações, julgue o próximo item acerca de flexão pura em vigas, tensão de cisalhamento e deflexão de viga.
Quando a embarcação navega em mar e recebe ondas cujas
ortogonais às cristas estão alinhadas com o seu eixo
longitudinal, a deflexão a meio navio será determinada por
valor proporcional a d = (5qL4
)/(384EI), desde que haja uma
crista à proa e outra crista à popa, e o casco fique apoiado
majoritariamente sobre essas duas cristas, o carregamento da
embarcação possa ser representado por carga (q)
uniformemente distribuída ao longo do casco, o
comprimento da onda seja de (L) metros e se iguale ao
comprimento da embarcação, E seja o módulo de
elasticidade e I seja o momento de inércia de uma seção
caixão (ou retangular oca) de eixo vertical maior que o eixo
horizontal, o momento de inércia da seção seja calculado por
I = (bp3 – bmpm
3
)/12, em que (b) é a boca, (p) é o pontal, (bm)
é a boca moldada e (pm) é o pontal moldado. Com essa
abordagem, admite-se que o movimento predominante dessa
embarcação seja o caturro.
A partir dessas informações, julgue o próximo item acerca de flexão pura em vigas, tensão de cisalhamento e deflexão de viga.
Quando a embarcação navega em mar e recebe ondas altas
cujas ortogonais às cristas fazem ângulo com seu eixo
longitudinal, o esforço cortante que se manifesta a 1/3 do
comprimento do casco, a contar da proa, será determinado
por valor proporcional a qL/3, desde que haja uma crista a
1/3 do comprimento da embarcação, próximo à proa, e outra
crista à popa, ficando o casco apoiado majoritariamente
sobre essas duas cristas, o carregamento da embarcação
possa ser representado por carga (q) uniformemente
distribuída ao longo do casco e o comprimento da onda seja
de (2L/3) metros, com o terço frontal do casco funcionando
como balanço, já que esse comprimento se projeta sobre
a cava entre cristas a barlamar. Com essa abordagem,
admite-se que os movimentos predominantes da embarcação
sejam o caturro e o balanço, e que o casco, nessas condições,
esteja submetido a forças cisalhantes que podem ser
combatidas por anteparas e cavername.
A partir dessas informações, julgue o próximo item acerca de flexão pura em vigas, tensão de cisalhamento e deflexão de viga.
Quando a embarcação navega em mar e recebe ondas cujas
ortogonais às cristas estão alinhadas com o seu eixo
longitudinal, o momento fletor a meio navio será
determinado por valor proporcional a qL2
/8, desde que haja
uma crista à proa e outra crista à popa e o casco fique
apoiado majoritariamente sobre essas duas cristas, o
carregamento da embarcação possa ser representado por
carga (q) uniformemente distribuída ao longo do casco e o
comprimento da onda seja de (L) metros e igual
ao comprimento da embarcação. Com essa abordagem,
admite-se que o movimento predominante dessa embarcação
seja o caturro, e que o casco esteja submetido a flexão
composta reta.
Um navio-tanque de 60.000 dwt tem casco que oferece resistência a pressões externas de até 200 kN/m2 . Ao se aproximar do berço, em manobra de atracação, com velocidade regulamentar, essa embarcação pressiona a defensa do tipo SCK Cell Fender, modelo SCK 1000, que consiste em cilindro de borracha natural ou sintética com malha de aço interna, com medidas de 1,1 m de diâmetro e 1,0 m de altura. O eixo longitudinal do cilindro posiciona-se segundo uma perpendicular à face externa do berço. O cilindro está protegido por placa de aço quadrada, com lado de 1,2 m, fixada no seu topo, cujo objetivo é distribuir tensões no momento da atracação. Ao tocar a defensa, o casco do navio-tanque pressiona a placa de aço contra o cilindro de borracha e produz deformação que reduz a sua altura em 10%.
Considerando-se essas informações, julgue o item subsequente quanto à Lei de Hooke.
Para que seja exercida a tensão máxima sobre o casco do
navio-tanque, mantida a deformação de 10% da altura do
cilindro de borracha, a constante elástica do cilindro de
borracha será de 3.000 kN/m.
Um navio-tanque de 60.000 dwt tem casco que oferece resistência a pressões externas de até 200 kN/m2 . Ao se aproximar do berço, em manobra de atracação, com velocidade regulamentar, essa embarcação pressiona a defensa do tipo SCK Cell Fender, modelo SCK 1000, que consiste em cilindro de borracha natural ou sintética com malha de aço interna, com medidas de 1,1 m de diâmetro e 1,0 m de altura. O eixo longitudinal do cilindro posiciona-se segundo uma perpendicular à face externa do berço. O cilindro está protegido por placa de aço quadrada, com lado de 1,2 m, fixada no seu topo, cujo objetivo é distribuir tensões no momento da atracação. Ao tocar a defensa, o casco do navio-tanque pressiona a placa de aço contra o cilindro de borracha e produz deformação que reduz a sua altura em 10%.
Considerando-se essas informações, julgue o item subsequente quanto à Lei de Hooke.
Caso a constante elástica do cilindro de borracha seja de 3.000 kN/m, o lado da placa quadrada de aço deve ter 1,6 m de comprimento, para que a tensão sobre o casco do naviotanque seja de 200 kN/m2 e a deformação do cilindro atinja 15% de sua altura.
Na construção da embarcação, a flutuabilidade depende da estanqueidade do casco, o qual é construído com vários formatos, a depender da carga a ser transportada. Em geral, o casco é constituído de fundo, que é a parte mais baixa, de costado, que é a parte lateral, e de encolamento, que faz a ligação entre o fundo e o costado. O casco completo tem, portanto, duas laterais e dois encolamentos. O pavimento que fecha a parte superior do casco é denominado de convés, o qual pode contribuir para o fechamento completo do casco, como nos navios petroleiros, ou pode ter aberturas para a admissão de carga, como nos navios graneleiros e porta-contenedores.
Julgue o item subsecutivo acerca da nomenclatura e da função dos elementos estruturais de uma embarcação.
O pontal é a dimensão vertical entre a face externa do fundo
do casco e a face superior do convés, ao passo que a boca é a
dimensão horizontal entre as faces externas das laterais do
casco, cuja medida é importante na decisão sobre a passagem
da embarcação em eclusa marítima ou canal marítimo
navegável; já o comprimento entre perpendiculares é a
distância horizontal, medida entre pontos, entre a proa e a
popa, as quais entram em contato com a linha de flutuação.
Na construção da embarcação, a flutuabilidade depende da estanqueidade do casco, o qual é construído com vários formatos, a depender da carga a ser transportada. Em geral, o casco é constituído de fundo, que é a parte mais baixa, de costado, que é a parte lateral, e de encolamento, que faz a ligação entre o fundo e o costado. O casco completo tem, portanto, duas laterais e dois encolamentos. O pavimento que fecha a parte superior do casco é denominado de convés, o qual pode contribuir para o fechamento completo do casco, como nos navios petroleiros, ou pode ter aberturas para a admissão de carga, como nos navios graneleiros e porta-contenedores.
Julgue o item subsecutivo acerca da nomenclatura e da função dos elementos estruturais de uma embarcação.
A quilha é uma viga-mestra que percorre todo o comprimento do navio, e as longarinas são vigas horizontais que, no plano longitudinal da embarcação, unem entre si as cavernas, as quais designam as peças de reforço colocadas transversalmente que formam o arcabouço do navio e servem para dar apoio ao forro exterior. Na direção transversal do casco, posicionam-se os vaus, que são vigas horizontais que unem as cavernas entre si e dão suporte a pavimentos. Já as anteparas são paredes de chapa longitudinais ou transversais cuja função é delimitar espaços, fortalecer a estrutura ou garantir a estanqueidade de um compartimento.
Com base nessas informações, julgue o item seguinte, que tratam de isostática e diagrama de esforços em viga.
Pelo diagrama de momentos dessa viga, constata-se
que, para o carregamento definido, não há momento superior
a 1 Joule, em valor absoluto; nas seções onde estão as
cristas, o convés e a faixa superior do casco estão
tracionados; a meio navio, entre proa e popa, o fundo da
embarcação e a faixa inferior do casco estão tracionados.
Com base nessas informações, julgue o item seguinte, que tratam de isostática e diagrama de esforços em viga.
O exame do diagrama de esforços cortantes dessa viga
permite observar que, para o carregamento definido, o maior
esforço cortante ocorre nas seções onde estão as cristas da
onda e que não há esforço cortante, a meio navio, entre proa
e popa.
A atmosfera e as águas oceânicas interagem intensamente e dessa troca de energias entre fluidos resultam as ondas oscilatórias e as correntes marinhas, ao passo que as marés são geradas pela atração da Lua e do Sol sobre o planeta. Julgue o item que se segue acerca de teoria espectral e comportamento em mar irregular.
Na área de geração das ondas, o estado de agitação do mar é
chamado vaga por resultar da superposição de diversos trens
de ondas sinusoidais com diferentes alturas, períodos e
direções que formam ângulos de até trinta graus com a
direção predominante das rajadas de vento. À proporção que
as ondas se distanciam da área de geração, passam para um
processo de dispersão, o que faz a superfície do oceano
apresentar regularidade crescente. Nesse caso, as cristas de
onda ficam mais longas, as alturas das cristas diminuem e os
períodos observados aumentam.
A atmosfera e as águas oceânicas interagem intensamente e dessa troca de energias entre fluidos resultam as ondas oscilatórias e as correntes marinhas, ao passo que as marés são geradas pela atração da Lua e do Sol sobre o planeta. Julgue o item que se segue acerca de teoria espectral e comportamento em mar irregular.
A energia total acumulada na agitação verificada na área de
geração é distribuída sobre uma gama de períodos das ondas
sinusoidais que constituem a estrutura da agitação. O modelo
que descreve matematicamente a distribuição proporcional
aos quadrados das alturas das ondas presentes em função dos
respectivos períodos (ou frequências) é denominado espectro
do movimento ondulatório.
A atmosfera e as águas oceânicas interagem intensamente e dessa troca de energias entre fluidos resultam as ondas oscilatórias e as correntes marinhas, ao passo que as marés são geradas pela atração da Lua e do Sol sobre o planeta. Julgue o item que se segue acerca de teoria espectral e comportamento em mar irregular.
A ação do vento de determinada velocidade sobre a
superfície do oceano, inicialmente em repouso, produz ondas
de oscilação que serão maiores com o crescimento da
velocidade do vento e da extensão da ação do vento (pista),
até ser atingido o fetch mínimo, e com o aumento da duração
desse vento, até ser atingida a duração mínima.
Para a representação, em modelo reduzido, na escala de um para mil, de quebra-mar de três quilômetros de extensão, a ser construído na área portuária, para atestar a agitação na área de sombra, requer-se uma estrutura linear, em modelo reduzido, de quatro metros de extensão.
As formulações teóricas usadas no projeto de quebra-mar precisam ser testadas, em modelo em escala reduzida, para confirmar a aplicabilidade dos conceitos propostos. Nesse contexto, em que a análise dimensional tem relevância no estabelecimento da semelhança entre o mundo real e o modelo reduzido, julgue o item subsequente.
A pressão, quando representada em modelo, deve atender à
seguinte equação dimensional: [P] = M x L-1 x T-1.
Como a altura da onda é variável importante na verificação da estabilidade dos blocos situados no escudo do quebra-mar, para a onda real incidente sobre o quebra-mar de três metros de altura ser representada, em modelo reduzido, por onda de cinco centímetros de altura, a escala do modelo deve ser 1:60.
A velocidade do fluxo na camada limite, que se desenvolve sobre uma superfície plana, decresce à proporção que o ponto de verificação da velocidade se desloca da fronteira exterior dessa camada e se aproxima da superfície da placa, onde a velocidade será nula.
No teste de inclinação, cujo objetivo é determinar, experimentalmente, a altura metacêntrica da embarcação, a banda da embarcação, registrada por pêndulo, é materializada pelo deslocamento de pesos instalados em pontos determinados do convés. A esse respeito, julgue o próximo item.
O teste de inclinação deve ser realizado em águas calmas,
com a embarcação amarrada sem tolher a banda e com o
carregamento máximo.
A avaria no chapeamento entre anteparas estanques centrais da embarcação produz alteração no calado, de forma que o volume inicial entre as anteparas inundadas seja compensado por igual volume distribuído entre os demais pares de anteparas não inundadas, fazendo prevalecer um novo calado, mas sem variação do deslocamento da embarcação.