Questões de Concurso Público SLU-DF 2019 para Analista de Gestão de Resíduos Sólidos - Engenharia Mecânica

Foram encontradas 120 questões

Q996686 Engenharia Mecânica

                                      


A figura anterior ilustra um sistema de frenagem manual de um tambor de raio R2 = 50 cm. A frenagem ocorre devido ao atrito de Coulomb entre a superfície externa do tambor e a superfície de contato de uma sapata de freio fixada no ponto C de uma barra, que é livre para girar em torno do ponto A. O coeficiente de atrito dinâmico entre as superfícies é μd = 0,8. A força de frenagem depende da carga P aplicada no ponto D da barra. No tambor, há um carretel de raio R1 = 20 cm, em que uma corda enrolada sustenta a carga B de massa MB = 20 kg. A distância de D a C é LCD = 80 cm. A distância entre C e A é LAC = 40 cm. A massa do tambor é igual a MT = 60 kg e o raio de giração em torno de seu eixo de rotação O é k0 = 40 cm. O raio de giração é aqui definido como a distância em relação ao eixo de rotação em que se pode concentrar a massa total do tambor, de modo que o momento polar de inércia calculado para a massa concentrada seja equivalente ao momento polar de inércia calculado para a massa total distribuída.

Com base nessas informações e na figura precedente, julgue o próximo item.


Se, no momento de aplicação da carga P, a massa B estiver em movimento descendente com velocidade constante, então, a partir desse momento, a barra AD estará submetida a esforços de flexão, cortantes e de compressão, no trecho AC.

Alternativas
Q996687 Engenharia Mecânica

                                      


A figura anterior ilustra um sistema de frenagem manual de um tambor de raio R2 = 50 cm. A frenagem ocorre devido ao atrito de Coulomb entre a superfície externa do tambor e a superfície de contato de uma sapata de freio fixada no ponto C de uma barra, que é livre para girar em torno do ponto A. O coeficiente de atrito dinâmico entre as superfícies é μd = 0,8. A força de frenagem depende da carga P aplicada no ponto D da barra. No tambor, há um carretel de raio R1 = 20 cm, em que uma corda enrolada sustenta a carga B de massa MB = 20 kg. A distância de D a C é LCD = 80 cm. A distância entre C e A é LAC = 40 cm. A massa do tambor é igual a MT = 60 kg e o raio de giração em torno de seu eixo de rotação O é k0 = 40 cm. O raio de giração é aqui definido como a distância em relação ao eixo de rotação em que se pode concentrar a massa total do tambor, de modo que o momento polar de inércia calculado para a massa concentrada seja equivalente ao momento polar de inércia calculado para a massa total distribuída.

Com base nessas informações e na figura precedente, julgue o próximo item.


Caso a barra AD tenha sido fabricada a partir de uma barra de perfil retangular uniforme, em que a face onde está fixada a sapata meça 2 cm e a outra, 4 cm, e caso se aplique ao ponto D uma carga P = 100 N, a região da barra onde a tensão máxima a que o material estará submetido se encontrará na vizinhança do ponto C, no trecho AC, e o valor dessa tensão máxima será superior a 50 MPa.

Alternativas
Q996688 Engenharia Mecânica

                                      


A figura anterior ilustra um sistema de frenagem manual de um tambor de raio R2 = 50 cm. A frenagem ocorre devido ao atrito de Coulomb entre a superfície externa do tambor e a superfície de contato de uma sapata de freio fixada no ponto C de uma barra, que é livre para girar em torno do ponto A. O coeficiente de atrito dinâmico entre as superfícies é μd = 0,8. A força de frenagem depende da carga P aplicada no ponto D da barra. No tambor, há um carretel de raio R1 = 20 cm, em que uma corda enrolada sustenta a carga B de massa MB = 20 kg. A distância de D a C é LCD = 80 cm. A distância entre C e A é LAC = 40 cm. A massa do tambor é igual a MT = 60 kg e o raio de giração em torno de seu eixo de rotação O é k0 = 40 cm. O raio de giração é aqui definido como a distância em relação ao eixo de rotação em que se pode concentrar a massa total do tambor, de modo que o momento polar de inércia calculado para a massa concentrada seja equivalente ao momento polar de inércia calculado para a massa total distribuída.

Com base nessas informações e na figura precedente, julgue o próximo item.


Considerando-se que g = 10 m/s2 seja a aceleração gravitacional, se, no instante de aplicação de uma carga P = 100 N, a massa B estiver em movimento descendente com velocidade vB = 2 m/s, então a massa atingirá o repouso quando estiver a 1 m abaixo da sua posição inicial, isto é, posição correspondente ao momento de aplicação da força P.

Alternativas
Q996689 Engenharia Mecânica

                                      


A figura anterior ilustra um sistema de frenagem manual de um tambor de raio R2 = 50 cm. A frenagem ocorre devido ao atrito de Coulomb entre a superfície externa do tambor e a superfície de contato de uma sapata de freio fixada no ponto C de uma barra, que é livre para girar em torno do ponto A. O coeficiente de atrito dinâmico entre as superfícies é μd = 0,8. A força de frenagem depende da carga P aplicada no ponto D da barra. No tambor, há um carretel de raio R1 = 20 cm, em que uma corda enrolada sustenta a carga B de massa MB = 20 kg. A distância de D a C é LCD = 80 cm. A distância entre C e A é LAC = 40 cm. A massa do tambor é igual a MT = 60 kg e o raio de giração em torno de seu eixo de rotação O é k0 = 40 cm. O raio de giração é aqui definido como a distância em relação ao eixo de rotação em que se pode concentrar a massa total do tambor, de modo que o momento polar de inércia calculado para a massa concentrada seja equivalente ao momento polar de inércia calculado para a massa total distribuída.

Com base nessas informações e na figura precedente, julgue o próximo item.


Para uma carga P = 100 N, a intensidade da reação horizontal no apoio A será de 300 N.

Alternativas
Q996690 Engenharia Mecânica

Imagem associada para resolução da questão


Em uma usina de tratamento de lixo, uma esteira transportadora horizontal, ilustrada na figura precedente, leva resíduos sólidos leves, previamente triturados, para um incinerador. A esteira movimenta-se com velocidade constante ve = 2 m/s. A partir de um alimentador, são despejados verticalmente resíduos à velocidade vr = 4 m/s e vazão mássica de 250 kg/s.


Com base nessas informações, julgue o item a seguir, considerando que a massa específica do lixo triturado seja ρ = 400 kg/m3 .


Considerando que inicialmente a esteira esteja vazia e que o atrito no sistema de acionamento e nos rolos da esteira seja desprezível, a força de tração requerida à movimentação da correia durante o carregamento será igual a 500 N.

Alternativas
Respostas
66: E
67: E
68: E
69: E
70: C