Questões de Vestibular
Sobre transformações químicas em química
Foram encontradas 1.209 questões
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
Considere que o volume disponível para o gás dentro do tubo
de uma lâmpada fluorescente seja independente da temperatura
e que o gás apresente comportamento ideal. Nessas condições,
se, após o acendimento da lâmpada, a temperatura do gás
aumentar de 25 ºC para 2.707 ºC, a pressão do gás será
aumentada em dez vezes.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
O tungstênio apresenta, em seu estado fundamental de energia, elétrons que ocupam orbitais ƒ.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
O tungstênio tem maior raio atômico e menor energia de
ionização que o carbono.
Ao longo dos anos, diversas descobertas levaram ao crescente aperfeiçoamento dos modelos atômicos. Em relação a esse assunto, faça o que se pede no item, que é do tipo C.
.
Assinale a opção correspondente à figura que melhor ilustra o modelo atômico de Thomson, que sucedeu o modelo de Dalton.
Ao longo dos anos, diversas descobertas levaram ao crescente aperfeiçoamento dos modelos atômicos. Em relação a esse assunto, julgue o item.
Apesar de inúmeras falhas, o modelo atômico de Dalton foi
capaz de explicar o princípio da conservação de massa, de
Lavoisier.
.
A base de uma escultura é formada por uma placa de latão, uma liga metálica de zinco (Zn) e cobre (Cu). Para minimizar os problemas relacionados à corrosão provocada pela chuva ácida, a placa foi recoberta com uma fina camada de prata (Ag). O recobrimento foi realizado a partir da eletrólise de uma solução aquosa de AgCl, fixando-se a placa de latão no anodo da célula eletrolítica. A voltagem foi ajustada de forma a se obter corrente constante de 10,0 A.
Átomos de Cu-63 e de Zn-65 têm a mesma quantidade de nêutrons.
De acordo com a teoria das colisões, para ocorrer uma reação química em fase gasosa deve haver colisões entre as moléculas reagentes, com energia suficiente e com orientação adequada.
Considere as seguintes afirmações a respeito da teoria das colisões.
I - O aumento da temperatura aumenta a frequência de colisões e a fração de moléculas com energia suficiente, mas não altera a orientação das moléculas.
II - O aumento da concentração aumenta a frequência das colisões.
III- Uma energia de ativação elevada representa uma grande fração de moléculas com energia suficiente para a reação ocorrer.
Quais estão corretas?
A fermentação alcoólica é um processo biológico no qual açúcares como a sacarose, conforme reação abaixo, são convertidos em energia celular, com produção de etanol e dióxido de carbono como resíduos metabólicos.
C12H22O11 + H2O → 4 CH3CH2OH + 4 CO2
A quantidade, em g, de açúcar necessária para preparar 1 L de aguardente, contendo 46% em massa de etanol, é aproximadamente
Na coluna da direita abaixo, estão relacionadas algumas substâncias químicas; na da esquerda, características dessas substâncias.
Associe adequadamente a coluna da esquerda à da direita.
( ) Sólido com alta maleabilidade e brilho metálico
( ) Gás com coloração esverdeada
( ) Gás pouco denso e altamente inflamável
( ) Substância condutora de eletricidade quando fundida
1. Cloreto de sódio
2. Ouro
3. Cloro
4. Bromo
5. Hidrogênio
A sequência correta de preenchimento dos parênteses, de cima para baixo, é
Assinale com V (verdadeiro) ou F (falso) as afirmações abaixo, referentes a algumas propriedades dos átomos.
( ) Isótonos têm propriedades físicas iguais.
( ) Isóbaros têm propriedades químicas iguais.
( ) Isótopos têm propriedades químicas iguais.
( ) Isóbaros de elementos diferentes têm necessariamente um número diferente de nêutrons.
A sequência correta de preenchimento dos parênteses, de cima para baixo, é
Leia o enunciado abaixo, sobre as órbitas eletrônicas.
“As órbitas eletrônicas em torno dos núcleos atômicos devem conter um número inteiro N de comprimentos de onda de de Broglie do elétron.”
Considere as seguintes afirmações sobre o enunciado acima.
I - Ele evidencia o comportamento onda-partícula do elétron.
II - Ele assegura que as órbitas eletrônicas são sempre circunferenciais.
III- Ele define o número quântico N que identifica a órbita ocupada pelo elétron.
Quais estão corretas?
ANO INTERNACIONAL DA TABELA PERIÓDICA
Há 150 anos, a primeira versão da tabela periódica foi elaborada pelo cientista Dimitri Mendeleiev. Trata-se de uma das conquistas de maior influência na ciência moderna, que reflete a essência não apenas da química, mas também da física, da biologia e de outras áreas das ciências puras. Como reconhecimento de sua importância, a UNESCO/ONU proclamou 2019 o Ano Internacional da Tabela Periódica.
Na tabela proposta por Mendeleiev em 1869, constavam os 64 elementos químicos conhecidos até então, além de espaços vazios para outros que ainda poderiam ser descobertos. Para esses possíveis novos elementos, ele empregou o prefixo “eca”, que significa “posição imediatamente posterior”. Por exemplo, o ecassilício seria o elemento químico a ocupar a primeira posição em sequência ao silício no seu grupo da tabela periódica.
Em homenagem ao trabalho desenvolvido pelo grande cientista, o elemento químico artificial de número
atômico 101 foi denominado mendelévio.
Com o reflorestamento, é possível minimizar os efeitos do aquecimento global, tendo em vista que uma árvore consegue captar, em média, 15,6 kg do CO2 lançado na atmosfera por ano. Sabe-se que, na combustão completa da gasolina, todos os átomos de carbono são convertidos em moléculas de CO2.
Admitindo que 1 litro de gasolina contém 600 g de isoctano (C8H18) e 200 g de etanol (C2H6O), no período de 1 ano, uma árvore será capaz de captar o CO2 emitido na combustão completa de x litros de gasolina.
O valor de x corresponde, aproximadamente, a:
A glicose, importante açúcar na alimentação de muitos seres vivos, possui fórmula igual a C6 H12O6 .
Sobre a glicose, é possível AFIRMAR que:
Os filmes de super-heróis dos quadrinhos se tornaram um fenômeno do cinema nos últimos anos. Um exemplo é o Homem de Ferro, personagem fictício dos quadrinhos publicados pela Marvel Comics. Sua identidade verdadeira é a do empresário e bilionário Tony Stark, que usa armaduras de alta tecnologia no combate ao crime.
Seu traje é feito de titânio (22Ti48), reforçado com fibra de carbono e revestimento cerâmico (usado em coletes à prova de balas e blindagem de carros). Já o capacete é hermeticamente selado, não permitindo, por isso, contaminação por fumaça ou venenos. A viseira é retrátil e um processador ligado à cabeça capta os sinais do cérebro, interpreta as ordens e as repassa para o traje. Instalado no peito do herói, um reator realiza a fusão fria do elemento paládio (46Pd106) para gerar a energia que alimenta as partes-chaves do traje. Além disso, ele também é capaz de disparar raios de energia.
(Fonte: https://www.pinterest.pt/jucianim/desenho/?lp=true Acesso em jan. 2018.)
Em relação aos elementos químicos constituintes do traje do
Homem de Ferro,