Questões de Concurso Público Transpetro 2018 para Engenheiro Júnior - Processamento (Químico)

Foram encontradas 70 questões

Q1090301 Engenharia Química e Química Industrial
O dióxido de carbono (CO2) é um gás muito utilizado em vários processos industriais, dentre os quais o de produção de bebida alcoólica. Considere-se que o dióxido de carbono é um gás ideal, em repouso, com uma temperatura de 127 oC, e pressão a 1000 kPa e sofre uma aceleração isentrópica, atingindo um número de Mach de 0,5. A temperatura, em Kelvin, após a aceleração, é de, aproximadamente:
Dado Calor específico de gás ideal k* = 1,25 para uma temperatura de 400 K
Alternativas
Q1090302 Engenharia Química e Química Industrial
Um engenheiro precisa transportar um fluido de massa específica 1000m kg/m3 e viscosidade dinâmica de 0,00001 Pa.s por uma tubulação de 100 metros de comprimento e diâmetro de 0,1 metro. Entre a saída da bomba utilizada e a saída do tubo que vai para a parte superior de um reservatório aberto a 10 metros de altura da bomba, existem duas válvulas abertas com comprimento equivalente adimensional representativo (Leq/D) de 8, cada válvula. Além disso, para levar o fluido até o reservatório, foi necessário o uso de dois cotovelos de 90° com Leq/D de 52.
Considerando-se o escoamento plenamente turbulento com fator de atrito f = 0,02, a pressão, em, Pa, na saída da bomba, para que a vazão volumétrica na tubulação seja 7,85 x 10-3 m3/s, é de
Dado Pressão atmosférica: 101,325 kPa
Alternativas
Q1090303 Engenharia Química e Química Industrial
Um engenheiro recebe duas bombas com curva característica que segue a equação H = H0 - AQ2, onde H0 tem 15 metros e A tem 105s2/m5. O supervisor desse engenheiro decide, usando as duas bombas em série, transportar um fluido entre dois tanques abertos com diferença de nível do primeiro para o segundo tanque de 10 metros. A tubulação que leva o fluido tem diâmetro de 0,1m e comprimento de 10m.
Desconsiderando-se os efeitos de perda de carga menores e maiores, a vazão de operação da bomba, em m3/s, é de
Alternativas
Q1090304 Engenharia Química e Química Industrial
O número de Reynolds representa a relação entre as forças viscosas e de inércia. Esse número adimensional é usado por engenheiros e cientistas para determinar se o regime de escoamento é laminar ou turbulento, e por isso, é de vital importância em projetos de engenharia. Um engenheiro observou que, com número de Reynolds 10000, o escoamento em um tubo se tornou plenamente turbulento.
Para que a observação do engenheiro responsável seja verdade para uma tubulação de diâmetro 0,1 m, que escoa um fluido de massa específica 1000 kg/m3 e viscosidade dinâmica de 0,00001 Pa.s, a vazão volumétrica, em m3/s, é de
Alternativas
Q1090305 Engenharia Química e Química Industrial
Medidores de vazão volumétrica internos são escolhidos baseando-se nas incertezas exigidas, custo, tempo de serviço e faixa de medidas. Um dos medidores de vazão bastante utilizados são os do tipo venturi que, apesar de caros, são interessantes devido à sua baixa perda de carga. Esses equipamentos de medição se baseiam em aceleração de fluidos através de um difusor cuja perda de carga é usada para medir indiretamente a vazão no escoamento. Um engenheiro dispõe de um venturi de diâmetro 0,125 para medir a vazão volumétrica numa tubulação de 0,25 m de diâmetro. Após a instalação do equipamento, o engenheiro mediu, no venturi, para o escoamento a queda de pressão em um medidor de pressão diferencial em 100 mm de água.
A vazão volumétrica, em m3/s nessa tubulação, é de, aproximadamente,
Dado Massa específica da água: 1000 kg/m3 Aceleração da gravidade: 10 m/s2 Massa específica do fluido de trabalho: 790 kg/m3 Coeficiente de vazão: 0,8
Alternativas
Q1090306 Engenharia Química e Química Industrial
Um dos problemas que podem causar redução drástica de eficiência em bombas centrífugas é o fenômeno de cavitação. Além de causar redução de eficiência, a cavitação provoca desgaste na superfície da bomba devido à erosão. Para evitar essa cavitação, os parâmetros — o NPSH disponível (NPSHA) e o NPSH requerido (NPSHR) — devem ser comparados, visando a determinar as condições em que a cavitação não ocorreria. Um engenheiro determinou que a vazão de operação da bomba em um dado sistema é 0,0123 m3/s, com diâmetro de 0,125 m. O tanque jusante da bomba está à mesma altura da bomba, e a pressão de sucção no tanque é de 34kPa.
Desconsiderando-se as perdas de carga maiores e menores, NPSHA, em metros, e a vazão volumétrica de operação para uma operação segura de cavitação são assim determinados:
Dado altura de sucção positiva líquida requerida: 4 metros Pressão de vapor do líquido: 4,25 kPa Massa específica: 1000 kg/m3
Alternativas
Q1090307 Engenharia Química e Química Industrial
Na análise via diagrama triangular de uma separação líquido-líquido de um soluto, a temperatura e pressão conhecidas, inicialmente se calcula o ponto de mistura M para as correntes conhecidas de alimentação e solvente. Na sequência, considerando-se a linha de amarração que passa por esse ponto e suas intersecções com a curva de solubilidade, as composições das fases líquidas em equilíbrio são calculadas.
Admitindo-se que uma corrente orgânica (30% em massa do soluto e 70% do diluente original), com vazão mássica total F kg/s é misturada com um solvente (puro) à vazão de 0,5 F kg/s, o ponto M tem composição percentual em massa de soluto, diluente original e solvente dadas, aproximadamente, por
Alternativas
Q1090308 Engenharia Química e Química Industrial
Na análise da absorção de um soluto (diluído), absorvido da fase gasosa para a fase líquida (solvente), estima-se a altura da torre l (em m) como:
Imagem associada para resolução da questão

tal que G e L são, respectivamente, as vazões molares de gás e líquido por unidade de área (em kgmol/sm2); m* é a constante de equilíbrio; Ky a é o coeficiente global de transferência de massa vezes a área por volume (em kgmol/sm); y0 e yl são as frações molares do soluto no gás na entrada e na saída da torre, respectivamente, e x0 e xl são as frações molares do soluto no solvente na saída e na entrada da torre, respectivamente.
Para um dado problema, os valores numéricos (no sistema SI) são conhecidos, e os termos da equação acima foram calculados, aproximadamente, como:
Imagem associada para resolução da questão

tal que as unidades (quando há) foram omitidas aqui propositadamente.
Usando-se o conceito da literatura de “número de unidades de transferência” (NTU) e “altura de uma unidade de transferência” (HTU), tem-se, nesse caso:
Alternativas
Q1090309 Engenharia Química e Química Industrial
Considere que foi desenvolvido um modelo empírico, relacionando-se dados experimentais de vazão volumétrica, q, de um líquido através de uma válvula e a diferença entre as pressões a montante, P1, e a jusante da mesma, P2, tal que: 
Imagem associada para resolução da questão

em que a constante Cv foi estimada por regressão não linear.
Considerando-se as três dimensões fundamentais MLt, a dimensão de Cv para consistência dimensional é
Alternativas
Q1090310 Engenharia Química e Química Industrial
Cinco experimentos de filtração de uma suspensão de um sal em água foram conduzidos em laboratório. Foram mantidas constantes todas as condições experimentais em todos os experimentos, exceto a queda de pressão (Δp), que foi variada em cinco níveis distintos resultantes, um para cada experimento. Os resultados em termos da razão ‘tempo de filtração’ por ‘volume de filtrado’ (t/V) versus ‘volume de filtrado’ são exibidos na Figura abaixo, onde cada reta numerada descreve o comportamento para um experimento.
Imagem associada para resolução da questão

Analisando-se os coeficientes linear e angular de cada reta, verifica-se que o experimento conduzido com o menor Δp foi o
Alternativas
Respostas
31: E
32: X
33: E
34: A
35: D
36: A
37: A
38: C
39: A
40: E