Questões de Concurso Para engenheiro júnior - processamento

Foram encontradas 134 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q1090310 Engenharia Química e Química Industrial
Cinco experimentos de filtração de uma suspensão de um sal em água foram conduzidos em laboratório. Foram mantidas constantes todas as condições experimentais em todos os experimentos, exceto a queda de pressão (Δp), que foi variada em cinco níveis distintos resultantes, um para cada experimento. Os resultados em termos da razão ‘tempo de filtração’ por ‘volume de filtrado’ (t/V) versus ‘volume de filtrado’ são exibidos na Figura abaixo, onde cada reta numerada descreve o comportamento para um experimento.
Imagem associada para resolução da questão

Analisando-se os coeficientes linear e angular de cada reta, verifica-se que o experimento conduzido com o menor Δp foi o
Alternativas
Q1090309 Engenharia Química e Química Industrial
Considere que foi desenvolvido um modelo empírico, relacionando-se dados experimentais de vazão volumétrica, q, de um líquido através de uma válvula e a diferença entre as pressões a montante, P1, e a jusante da mesma, P2, tal que: 
Imagem associada para resolução da questão

em que a constante Cv foi estimada por regressão não linear.
Considerando-se as três dimensões fundamentais MLt, a dimensão de Cv para consistência dimensional é
Alternativas
Q1090308 Engenharia Química e Química Industrial
Na análise da absorção de um soluto (diluído), absorvido da fase gasosa para a fase líquida (solvente), estima-se a altura da torre l (em m) como:
Imagem associada para resolução da questão

tal que G e L são, respectivamente, as vazões molares de gás e líquido por unidade de área (em kgmol/sm2); m* é a constante de equilíbrio; Ky a é o coeficiente global de transferência de massa vezes a área por volume (em kgmol/sm); y0 e yl são as frações molares do soluto no gás na entrada e na saída da torre, respectivamente, e x0 e xl são as frações molares do soluto no solvente na saída e na entrada da torre, respectivamente.
Para um dado problema, os valores numéricos (no sistema SI) são conhecidos, e os termos da equação acima foram calculados, aproximadamente, como:
Imagem associada para resolução da questão

tal que as unidades (quando há) foram omitidas aqui propositadamente.
Usando-se o conceito da literatura de “número de unidades de transferência” (NTU) e “altura de uma unidade de transferência” (HTU), tem-se, nesse caso:
Alternativas
Q1090307 Engenharia Química e Química Industrial
Na análise via diagrama triangular de uma separação líquido-líquido de um soluto, a temperatura e pressão conhecidas, inicialmente se calcula o ponto de mistura M para as correntes conhecidas de alimentação e solvente. Na sequência, considerando-se a linha de amarração que passa por esse ponto e suas intersecções com a curva de solubilidade, as composições das fases líquidas em equilíbrio são calculadas.
Admitindo-se que uma corrente orgânica (30% em massa do soluto e 70% do diluente original), com vazão mássica total F kg/s é misturada com um solvente (puro) à vazão de 0,5 F kg/s, o ponto M tem composição percentual em massa de soluto, diluente original e solvente dadas, aproximadamente, por
Alternativas
Q1090306 Engenharia Química e Química Industrial
Um dos problemas que podem causar redução drástica de eficiência em bombas centrífugas é o fenômeno de cavitação. Além de causar redução de eficiência, a cavitação provoca desgaste na superfície da bomba devido à erosão. Para evitar essa cavitação, os parâmetros — o NPSH disponível (NPSHA) e o NPSH requerido (NPSHR) — devem ser comparados, visando a determinar as condições em que a cavitação não ocorreria. Um engenheiro determinou que a vazão de operação da bomba em um dado sistema é 0,0123 m3/s, com diâmetro de 0,125 m. O tanque jusante da bomba está à mesma altura da bomba, e a pressão de sucção no tanque é de 34kPa.
Desconsiderando-se as perdas de carga maiores e menores, NPSHA, em metros, e a vazão volumétrica de operação para uma operação segura de cavitação são assim determinados:
Dado altura de sucção positiva líquida requerida: 4 metros Pressão de vapor do líquido: 4,25 kPa Massa específica: 1000 kg/m3
Alternativas
Q1090305 Engenharia Química e Química Industrial
Medidores de vazão volumétrica internos são escolhidos baseando-se nas incertezas exigidas, custo, tempo de serviço e faixa de medidas. Um dos medidores de vazão bastante utilizados são os do tipo venturi que, apesar de caros, são interessantes devido à sua baixa perda de carga. Esses equipamentos de medição se baseiam em aceleração de fluidos através de um difusor cuja perda de carga é usada para medir indiretamente a vazão no escoamento. Um engenheiro dispõe de um venturi de diâmetro 0,125 para medir a vazão volumétrica numa tubulação de 0,25 m de diâmetro. Após a instalação do equipamento, o engenheiro mediu, no venturi, para o escoamento a queda de pressão em um medidor de pressão diferencial em 100 mm de água.
A vazão volumétrica, em m3/s nessa tubulação, é de, aproximadamente,
Dado Massa específica da água: 1000 kg/m3 Aceleração da gravidade: 10 m/s2 Massa específica do fluido de trabalho: 790 kg/m3 Coeficiente de vazão: 0,8
Alternativas
Q1090304 Engenharia Química e Química Industrial
O número de Reynolds representa a relação entre as forças viscosas e de inércia. Esse número adimensional é usado por engenheiros e cientistas para determinar se o regime de escoamento é laminar ou turbulento, e por isso, é de vital importância em projetos de engenharia. Um engenheiro observou que, com número de Reynolds 10000, o escoamento em um tubo se tornou plenamente turbulento.
Para que a observação do engenheiro responsável seja verdade para uma tubulação de diâmetro 0,1 m, que escoa um fluido de massa específica 1000 kg/m3 e viscosidade dinâmica de 0,00001 Pa.s, a vazão volumétrica, em m3/s, é de
Alternativas
Q1090303 Engenharia Química e Química Industrial
Um engenheiro recebe duas bombas com curva característica que segue a equação H = H0 - AQ2, onde H0 tem 15 metros e A tem 105s2/m5. O supervisor desse engenheiro decide, usando as duas bombas em série, transportar um fluido entre dois tanques abertos com diferença de nível do primeiro para o segundo tanque de 10 metros. A tubulação que leva o fluido tem diâmetro de 0,1m e comprimento de 10m.
Desconsiderando-se os efeitos de perda de carga menores e maiores, a vazão de operação da bomba, em m3/s, é de
Alternativas
Q1090301 Engenharia Química e Química Industrial
O dióxido de carbono (CO2) é um gás muito utilizado em vários processos industriais, dentre os quais o de produção de bebida alcoólica. Considere-se que o dióxido de carbono é um gás ideal, em repouso, com uma temperatura de 127 oC, e pressão a 1000 kPa e sofre uma aceleração isentrópica, atingindo um número de Mach de 0,5. A temperatura, em Kelvin, após a aceleração, é de, aproximadamente:
Dado Calor específico de gás ideal k* = 1,25 para uma temperatura de 400 K
Alternativas
Q1090300 Engenharia Química e Química Industrial
No diagrama de fase PT apresentado abaixo, o estado físico de uma substância pode mudar apenas alterando o valor de uma variável e permanecendo a outra variável constante.
Imagem associada para resolução da questão

Nesse contexto, em referência ao diagrama, a passagem de
Alternativas
Q1090299 Engenharia Química e Química Industrial
Uma indústria de produtos alimentícios possui um reator do tipo CSTR em um processo de mistura intensa. A função desse reator é processar a reação de hidrólise do anidrido acético (1a ordem em anidrido) com excesso de água a 25 °C e 1 atm. Essa reação está expressa abaixo:
C4H6O3 + H2 O → 2 CH3COOH
A reação deverá produzir 20 kg/h de ácido acético, a constante de velocidade é aproximadamente 0,05 min-1 , a concentração inicial de anidrido acético é de 100 g/L, e a conversão, de 80%.
O volume aproximado, em litros, desse reator é
Dados Massa Molar do Ácido Acético (CH3COOH) = 60 g/mol Massa Molar do Anidrido Acético (C4H6O3 ) = 102 g/mol
Alternativas
Q1090298 Engenharia Química e Química Industrial
Duas funções de transferência de malha fechada que representam partes de um sistema industrial são dadas por G1(s) e G2(s), que se apresentam abaixo.
Imagem associada para resolução da questão

Para controle dessas malhas, um engenheiro deve levar em consideração vários fatores, como estabilidade, margem de fase, ganho, entre outros.
Nesse caso, em relação às funções de transferência G1(s) e G2(s), tem-se o seguinte:
Alternativas
Q1090297 Engenharia Química e Química Industrial
As propriedades termodinâmicas são estudadas por vários pesquisadores em todo o mundo. Em parte desses estudos estão as relações de Gibbs, dentre as quais uma é baseada na função de Helmholtz, apresentada abaixo.
da = –sdT – Pdv
Utilizando-se as relações de Maxwell e a equação de estado do gás ideal (PV = RT), a relação (∂s/∂v)T para um gás ideal é
Alternativas
Q1090296 Engenharia Química e Química Industrial
Em um reator é realizada a hidrogenação de C2H4 . Esse reator é alimentado por duas correntes: uma com vazão de 56 kg h-1 de C2H4 e outra com vazão de 10 kg h-1 de H2. O processo opera em estado estacionário, e, na saída do reator, verifica-se que apenas o reagente limitante foi consumido por completo.
Em uma etapa posterior, o reagente em excesso que não participou da reação é recuperado, sendo completamente separado do produto formado. A vazão de reagente recuperado, em kg h-1, é igual a
Dado Massas molares: C2H4 : 28 g mol-1, H2 : 2g mol-1
Alternativas
Q1090295 Engenharia Química e Química Industrial
Uma corrente de alimentação contém uma mistura formada por dois componentes: A e B. Essa corrente é continuamente separada em duas etapas, sem que haja acúmulo. Na primeira etapa, a corrente de alimentação é separada em duas correntes: X e Y. A corrente Y tem vazão de 300 kg h-1 e concentração percentual mássica de A igual a 20%.
A corrente X é encaminhada para a segunda etapa, sendo separada em duas novas correntes: W e Z. A corrente W tem vazão de 80 kg h-1 e contém 95% de A. Por sua vez, a corrente Z tem vazão de 20 kg h-1 e contém 20% de A.
A concentração percentual de A na corrente de alimentação é igual a
Alternativas
Q1090294 Engenharia Química e Química Industrial
Uma mistura gasosa de hidrocarbonetos é formada por 0,4 mol de CH4, 0,7 mol de C2H6 e 0,9 mol de C3H8 . Essa mistura se encontra em um reservatório sob pressão total de 200 kPa.
A pressão parcial de CH4 nessa mistura é igual a
Alternativas
Q1090293 Química
Um reservatório contém 40 m3 de uma solução aquosa de H2S na concentração 0,02 mol L-1 .
A massa de H2S presente no reservatório corresponde a
Dado Massa molar do H2S: 34 g mol-1
Alternativas
Q1090292 Engenharia Química e Química Industrial
Uma amostra de N2 é mantida no estado líquido a 60 K. Ao ser posta sob Condições Normais de Temperatura e Pressão (CNTP), a amostra passou ao estado gasoso e ocupou o volume de 0,112 m3. Considere que o gás formado tenha comportamento ideal e que, nas CNTP, o volume molar de um gás ideal é 2,24 x 10-2 m3 mol-1.
A massa da amostra, em gramas, de N2 líquido que evaporou é igual a
Dado Massa molar do N2 : 28 g mol-1
Alternativas
Q1090291 Engenharia Química e Química Industrial
Um sistema formado por CO2 saturado com vapor d’água apresenta pressão total de 100 kPa a 363 K. Nessa temperatura, a pressão de vapor da água é 70 kPa.
A fração molar do CO2 na mistura é igual a
Alternativas
Q1090290 Engenharia Química e Química Industrial
O Número de Prandtl é uma grandeza adimensional que relaciona as camadas limites hidrodinâmica e térmica no estudo da transferência de calor no escoamento de fluidos em tubulações.
Esse Número é função das seguintes grandezas: μ = viscosidade dinâmica [kg s-1m-1] Cp = calor específico a pressão constante [ J kg-1 K-1] K = condutividade térmica [W m-1 K-1]
A expressão que define o Número de Prandtl corresponde a
Alternativas
Respostas
1: E
2: A
3: C
4: A
5: A
6: D
7: A
8: E
9: E
10: C
11: B
12: E
13: B
14: C
15: C
16: B
17: D
18: A
19: B
20: E